Catalytic mechanism of cytochrome P450 for 5'-hydroxylation of nicotine: fundamental reaction pathways and stereoselectivity.

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
Journal of the American Chemical Society (Impact Factor: 10.68). 05/2011; 133(19):7416-27. DOI: 10.1021/ja111657j
Source: PubMed

ABSTRACT A series of computational methods were used to study how cytochrome P450 2A6 (CYP2A6) interacts with (S)-(-)-nicotine, demonstrating that the dominant molecular species of (S)-(-)-nicotine in CYP2A6 active site exists in the free base state (with two conformations, SR(t) and SR(c)), despite the fact that the protonated state is dominant for the free ligand in solution. The computational results reveal that the dominant pathway of nicotine metabolism in CYP2A6 is through nicotine free base oxidation. Further, first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations were carried out to uncover the detailed reaction pathways for the CYP2A6-catalyzed nicotine 5'-hydroxylation reaction. In the determined CYP2A6-(S)-(-)-nicotine binding structures, the oxygen of Compound I (Cpd I) can abstract a hydrogen from either the trans-5'- or the cis-5'-position of (S)-(-)-nicotine. CYP2A6-catalyzed (S)-(-)-nicotine 5'-hydroxylation consists of two reaction steps, that is, the hydrogen transfer from the 5'-position of (S)-(-)-nicotine to the oxygen of Cpd I (the H-transfer step), followed by the recombination of the (S)-(-)-nicotine moiety with the iron-bound hydroxyl group to generate the 5'-hydroxynicotine product (the O-rebound step). The H-transfer step is rate-determining. The 5'-hydroxylation proceeds mainly with the stereoselective loss of the trans-5'-hydrogen, that is, the 5'-hydrogen trans to the pyridine ring. The calculated overall stereoselectivity of ∼97% favoring the trans-5'-hydroxylation is close to the observed stereoselectivity of 89-94%. This is the first time it has been demonstrated that a CYP substrate exists dominantly in one protonation state (cationic species) in solution, but uses its less-favorable protonation state (neutral free base) to perform the enzymatic reaction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: First-principles quantum mechanical/molecular mechanical free energy calculations have been performed to provide the first detailed computational study on the possible mechanisms for reaction of proteasome with a representative peptide inhibitor, Epoxomicin (EPX). The calculated results reveal that the most favorable reaction pathway consists of five steps. The first is a proton transfer process, activating Thr1-O(γ) directly by Thr1-N(z) to form a zwitterionic intermediate. The next step is nucleophilic attack on the carbonyl carbon of EPX by the negatively charged Thr1-O(γ) atom, followed by a proton transfer from Thr1-N(z) to the carbonyl oxygen of EPX (third step). Then, Thr1-N(z) attacks on the carbon of the epoxide group of EPX, accompanied by the epoxide ring-opening (S(N)2 nucleophilic substitution) such that a zwitterionic morpholino ring is formed between residue Thr1 and EPX. Finally, the product of morpholino ring is generated via another proton transfer. Noteworthy, Thr1-O(γ) can be activated directly by Thr1-N(z) to form the zwitterionic intermediate (with a free energy barrier of only 9.9 kcal/mol), and water cannot assist the rate-determining step, which is remarkably different from the previous perception that a water molecule should mediate the activation process. The fourth reaction step has the highest free energy barrier (23.6 kcal/mol) which is reasonably close to the activation free energy (∼21-22 kcal/mol) derived from experimental kinetic data. The obtained novel mechanistic insights should be valuable for not only future rational design of more efficient proteasome inhibitors but also understanding the general reaction mechanism of proteasome with a peptide or protein.
    Journal of the American Chemical Society 06/2012; 134(25):10436-50. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: QM cluster and QM/MM protein models have been employed to understand aspects of the reaction mechanism of plant allene oxide synthase (pAOS). In this study we have investigated two reaction mechanisms for pAOS. The standard pAOS mechanism was contrasted with an alternative involving an additional active site molecule which has been shown to facilitate proton coupled electron transfer (PCET) in related systems. Firstly, we found that the results from QM/MM protein model are comparable with those from the QM cluster model, presumably due to the large active site used. Furthermore, the results from the QM cluster model show that the FeIII and FeIV pathways for the standard mechanism have similar energetic and structural properties, indicating that the reaction mechanism may well proceed via both pathways. However, while the PCET process is facilitated by an additional active site bound water in other related families, in pAOS it is not, suggesting this type of process is not general to all closely related family members.
    Journal of Molecular Graphics and Modelling 01/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450 enzymes (P450s) are important in drug metabolism and have been linked to adverse drug reactions. P450s display broad substrate reactivity, and prediction of metabolites is complex. QM/MM studies of P450 reactivity have provided insight into important details of the reaction mechanisms and have the potential to make predictions of metabolite formation. Here we present a comprehensive study of the oxidation of three widely used pharmaceutical compounds (S-ibuprofen, diclofenac, and S-warfarin) by one of the major drug-metabolizing P450 isoforms, CYP2C9. The reaction barriers to substrate oxidation by the iron-oxo species (Compound I) have been calculated at the B3LYP-D/CHARMM27 level for different possible metabolism sites for each drug, on multiple pathways. In the cases of ibuprofen and warfarin, the process with the lowest activation energy is consistent with the experimentally preferred metabolite. For diclofenac, the pathway leading to the experimentally observed metabolite is not the one with the lowest activation energy. This apparent inconsistency with experiment might be explained by the two very different binding modes involved in oxidation at the two competing positions. The carboxylate of diclofenac interacts strongly with the CYP2C9 Arg108 side chain in the transition state for formation of the observed metabolite—but not in that for the competing pathway. We compare reaction barriers calculated both in the presence and in the absence of the protein and observe a marked improvement in selectivity prediction ability upon inclusion of the protein for all of the substrates studied. The barriers calculated with the protein are generally higher than those calculated in the gas phase. This suggests that active-site residues surrounding the substrate play an important role in controlling selectivity in CYP2C9. The results show that inclusion of sampling (particularly) and dispersion effects is important in making accurate predictions of drug metabolism selectivity of P450s using QM/MM methods.
    Journal of the American Chemical Society 05/2013; 135(21):8001–8015. · 10.68 Impact Factor


Available from