Catalytic Mechanism of Cytochrome P450 for 5 '-Hydroxylation of Nicotine: Fundamental Reaction Pathways and Stereoselectivity

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
Journal of the American Chemical Society (Impact Factor: 12.11). 05/2011; 133(19):7416-27. DOI: 10.1021/ja111657j
Source: PubMed

ABSTRACT A series of computational methods were used to study how cytochrome P450 2A6 (CYP2A6) interacts with (S)-(-)-nicotine, demonstrating that the dominant molecular species of (S)-(-)-nicotine in CYP2A6 active site exists in the free base state (with two conformations, SR(t) and SR(c)), despite the fact that the protonated state is dominant for the free ligand in solution. The computational results reveal that the dominant pathway of nicotine metabolism in CYP2A6 is through nicotine free base oxidation. Further, first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations were carried out to uncover the detailed reaction pathways for the CYP2A6-catalyzed nicotine 5'-hydroxylation reaction. In the determined CYP2A6-(S)-(-)-nicotine binding structures, the oxygen of Compound I (Cpd I) can abstract a hydrogen from either the trans-5'- or the cis-5'-position of (S)-(-)-nicotine. CYP2A6-catalyzed (S)-(-)-nicotine 5'-hydroxylation consists of two reaction steps, that is, the hydrogen transfer from the 5'-position of (S)-(-)-nicotine to the oxygen of Cpd I (the H-transfer step), followed by the recombination of the (S)-(-)-nicotine moiety with the iron-bound hydroxyl group to generate the 5'-hydroxynicotine product (the O-rebound step). The H-transfer step is rate-determining. The 5'-hydroxylation proceeds mainly with the stereoselective loss of the trans-5'-hydrogen, that is, the 5'-hydrogen trans to the pyridine ring. The calculated overall stereoselectivity of ∼97% favoring the trans-5'-hydroxylation is close to the observed stereoselectivity of 89-94%. This is the first time it has been demonstrated that a CYP substrate exists dominantly in one protonation state (cationic species) in solution, but uses its less-favorable protonation state (neutral free base) to perform the enzymatic reaction.

Download full-text


Available from: Dongmei Li, May 08, 2015
26 Reads
    • "'-hydroxylation of (S)-(-)-nicotine has been modelled with QM/MM (at the B3LYP/AMBER level) in an attempt to explain the observed stereoselectivity of hydroxylation.[27] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Making reliable predictions of drug metabolites requires detailed knowledge of the chemical reactivity of drug metabolizing enzymes. Cytochrome P450 enzymes (P450s) play an important role in drug metabolism. Numerous adverse drug reactions have been identified that occur as a result of interactions with P450s. These enzymes display complex reactivity and the active oxidizing species is highly reactive and difficult to isolate, making P450s ideal candidates for computational study. Hybrid quantum mechanics/molecular mechanics calculations (QM/MM) have provided valuable insight into the reactivity of P450s, and will assist in the development of simpler predictive models. QM/MM methods have been used to model the metabolism of several drug molecules in human P450s, and have successfully rationalized experimentally observed selectivity. QM/MM calculations have been used to investigate the reactivity of other drug metabolizing enzymes, such as soluble epoxide hydrolase and glutathione transferases. Here, we review the application of QM/MM methods to modelling reactions catalyzed by drug metabolizing enzymes.
    Current topics in medicinal chemistry 05/2014; 14(11). DOI:10.2174/1568026614666140506114859 · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We provide a detailed description of the cis-trans isomerization of 4-hydroxytamoxifen/endoxifen catalyzed by several isoforms from the cytochrome P450 (CYP) superfamily, including CYP1B1, CYP2B6, and CYP2C19. We show that the reactions mainly involve redox processes catalyzed by CYP. DFT calculation results strongly suggest that the isomerization occurs via a cationic intermediate. The cationic cis-isomer is more than 3 kcal/mol more stable than the trans form, resulting in an easier conversion from trans-to-cis than cis-to-trans. The cis-trans isomerization is a rarely reported CYP reaction and is ascribed to the lack of a second abstractable proton on the ethenyl group of the triarylvinyl class of substrates. The cationic intermediates thus formed instead of the stable dehydrogenation products allow for isomerization to occur. As a comparison, the reactions for the tamoxifen derivatives are compared to those of other substrates, 4-hydroxyacetanilide and raloxifene, for which the stable dehydrogenation products are formed.
    Journal of Chemical Information and Modeling 08/2011; 51(9):2293-301. DOI:10.1021/ci2001082 · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By performing homology modeling, molecular docking, and molecular dynamics (MD) simulations, we have developed three-dimensional (3D) structural models of the M5 muscarinic acetylcholine receptor (mAChR) and two complexes for M5 mAChR binding with antagonists SVT-40776 and solifenacin in the environment of lipid bilayer and solvent water. According to the simulated results, each of the antagonists is oriented horizontally in the binding pocket formed by transmembrane helices 2, 3, and 5-7. The cationic headgroup of each of the antagonists interacts with a negatively charged residue, Asp110, through electrostatic and hydrogen-bonding interactions. The simulated results also reveal some significant difference between the binding modes of SVT-40776 and solifenacin. In particular, SVT-40776 is persistently hydrogen bonded with the side chain of residue Tyr458, whereas solifenacin cannot form a similar hydrogen bond with residues around its carbonyl group. Such significant difference in the binding structures is consistent with the fact that SVT-40776 has a much higher binding affinity (K(d) = 0.4 nM) to M5 mAChR than that of solifenacin (K(d) = 31 nM) with the same reeptor. The calculated binding free energy change (-2.3 ± 0.3 kcal/mol) from solifenacin to SVT-40776 is in good agreement with the experimentally derived binding free energy change (-2.58 kcal/mol), suggesting that our modeled M5 mAChR structure and its complexes with the antagonists are reliable. The new structural insights obtained from this computational study are expected to stimulate further biochemical and pharmacological studies on the detailed structures of M5 and other subtypes of mAChRs.
    The Journal of Physical Chemistry B 12/2011; 116(1):532-41. DOI:10.1021/jp210579b · 3.30 Impact Factor
Show more