Article

Regulation of connexin 43 by basic fibroblast growth factor in the bladder: transcriptional and behavioral implications.

Kyoto University, Kyoto, Japan.
The Journal of urology (Impact Factor: 3.75). 06/2011; 185(6):2398-404. DOI: 10.1016/j.juro.2011.02.018
Source: PubMed

ABSTRACT Basic fibroblast growth factor is a candidate causative factor of detrusor overactivity in bladder outlet obstruction cases through up-regulation of the gap junction protein connexin 43. We addressed the transcriptional and behavioral implications of this axis.
Cx43 and Cx45 mRNA expression was assessed by real-time reverse transcriptase-polymerase chain reaction in the bladder of a rat bladder outlet obstruction model and in cultured rat bladder smooth muscle cells with and without basic fibroblast growth factor treatment. Involvement of the extracellular signal regulated kinase 1/2-activator protein-1 pathway was evaluated by immunofluorescence study and a promoter-reporter assay in bladder smooth muscle cells. The effect of basic fibroblast growth factor on micturition behavior was measured in unrestrained rats under a 12-hour light/dark cycle using a controlled release system from gelatin hydrogels fixed on the bladder. The expression of extracellular signal regulated kinase 1/2 and connexin 43 protein was assessed by Western blotting of rat bladder protein.
Cx43 but not Cx45 mRNA expression was increased in the bladder of the obstruction model and in bladder smooth muscle cells treated with basic fibroblast growth factor. The mitogen-activated and extracellular signal-regulated kinase kinase inhibitor PD98059 blocked the stimulatory effect of basic fibroblast growth factor on connexin 43 protein expression and promoter activity, which was also decreased by mutation or deletion of an activator protein-1 cis-element of the connexin 43 promoter. In vivo application of basic fibroblast growth factor on the bladder increased urinary frequency during the latter half of the dark phase, ie the late active phase of rats (F = 5.1, 2-way ANOVA p <0.05). The expression of phospho-extracellular signal regulated kinase 1/2 and connexin 43 protein was increased in the bladder.
The extracellular signal regulated kinase 1/2-activator protein-1-connexin 43 axis could be a potential therapeutic target for increased urinary frequency.

1 Bookmark
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overactive bladder (OAB) is a pervasive clinical problem involving alterations in both neurogenic and myogenic activity. While there has been some progress in understanding neurogenic inputs to OAB, the mechanisms controlling myogenic bladder activity are unclear. We report the involvement of myocardin (MYOCD) and microRNA-1 (miR-1) in the regulation of connexin 43 (GJA1), a major gap junction in bladder smooth muscle, and the collective role of these molecules during post-natal bladder development. Wild type mouse bladders showed normal development from early postnatal to adult including increases in bladder capacity and maintenance of normal sensitivity to cholinergic agents concurrent with down-regulation of MYOCD and several smooth muscle cell (SMC) contractile genes. Myocardin heterozygous-knockout mice exhibited reduced expression of Myocd mRNA and several SMC contractile genes concurrent with bladder SMC hypersensitivity that was mediated by gap junctions. In both cultured rat bladder SMC and in vivo bladders, MYOCD down-regulated GJA1 expression through miR-1 up-regulation. Interestingly, adult myocardin heterozygous-knockout mice showed normal increases in bladder and body weight but lower bladder capacity compared to wild type mice. These results suggest that MYOCD down-regulates GJA1 expression via miR-1 up-regulation, thereby contributing to maintenance of normal sensitivity and development of bladder capacity. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 01/2013; · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The coordinated action of the detrusor muscle cells in the urinary bladder is governed by cell-cell communication through gap junction, consisted of connexin (Cx) molecules. Even though a number of researches have been mostly focused on expressional changes of a few Cx isoforms in clinically dysfunctional condition of the bladder, less attention has been paid for investigation of Cx isoforms present in the bladder. Using real-time PCR analysis, the present study examined Cx isoforms expressing in the male rat bladder during postnatal period. Also, expressional patterns of Cx isoforms were evaluated in the bladder at different postnatal ages. Of a total of 13 Cx isoforms tested in the present study, we were able to detect mRNAs of 6 Cx isoforms in the rat urinary bladder, including Cxs 31, 31.1, 32, 37, 40, and 45. The transcript levels of Cxs 31, 31.1, 37, 40, and 45 were gradually increased from 1 week of age until 25 days of age, followed by transient decreases at 45 days of age. However, abundance of Cx32 transcript was drastically increased at 15 days of age, followed by a sharp drop at 45 days of age. These results indicate that differential expression of Cx isoforms in the bladder during postnatal development would be necessary for maintaining proper function of the bladder. A question remains to be answered if significant decreases of transcript levels of some Cx isoforms at the elderly are associated with age-dependent dysfunction of the bladder.
    Journal of Animal Science and Technology. 01/2012; 54(6).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bladder dysfunction is common in Multiple Sclerosis (MS) but little is known of its pathophysiology. We show that mice with experimental autoimmune encephalomyelitis (EAE), a MS model, have micturition dysfunction and altered expression of genes associated with bladder mechanosensory, transduction and signaling systems including pannexin 1 (Panx1) and Gja1 (encoding connexin43, referred to here as Cx43). EAE mice with Panx1 depletion (Panx1(-/-)) displayed similar neurological deficits but lesser micturition dysfunction compared to Panx1(+/+) EAE. Cx43 and IL-1β upregulation in Panx1(+/+) EAE bladder mucosa was not observed in Panx1(-/-) EAE. In urothelial cells, IL-1β stimulation increased Cx43 expression, dye-coupling, and p38 MAPK phosphorylation but not ERK1/2 phosphorylation. SB203580 (p38 MAPK inhibitor) prevented IL-1β-induced Cx43 upregulation. IL-1β also increased IL-1β, IL-1R-1, PANX1 and CASP1 expression. Mefloquine (Panx1 blocker) reduced these IL-1β responses. We propose that Panx1 signaling provides a positive feedback loop for inflammatory responses involved in bladder dysfunction in MS.
    Scientific Reports 07/2013; 3:2152. · 5.08 Impact Factor