Study on the Meningoima Using FT-Mid-IR Spectroscopy

College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Guang pu xue yu guang pu fen xi = Guang pu (Impact Factor: 0.29). 02/2011; 31(2):353-6. DOI: 10.3964/j.issn.1000-0593(2011)02-0353-04
Source: PubMed


In the present investigation, 24 cases of meningoima tissues (including 12 cases of benign tumor and 12 cases of malignant tumor 12) were detected using FT-mid-IR spectroscopy linked with attenuated total reflectance (ATR) accessory. These FTIR spectra obtained from the above-mentioned meningoima tissues were analyzed and compared. Significant differences were found in the spectral features of different kinds of meningoima tissues for example fibrous type meningoima and endothelioid meningoima; and for the same type of meningoima tissues the significant differences in the spectram features can be also observed with the increase of grade malignancy. The malignant tumor can be distinguished primarily from benign tumor by the changes of position, shape and intensity of infrared absorption bands, particularly in the ranges of 1 000-1 500 cm(-1). The results show that the peak position of the bands (such as 1 160 cm(-1)) can be used to distinguish the characteristic of meningoima which are in agreement with the pathological results. The accuracy is larger than 85%. These results demonstrate that FT-mid-IR spectroscopy exhibits prospect to develop a novel, non-invasive and rapid method for the diagnosis the brain tumors.

9 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The authors systemically reviewed the development of FTIR technology and its innovative advances during the past fifty years. FTIR technique was once abandoned after initial exploration in biomedical fields, which could not confirm its reliability and credibility. After technological innovation and refined numerical analysis methods, FTIR technique has been applied to a wide range of fields, from single cellular to the complex biomedical tissue components. Nowadays, mature and advanced FTIR technology, such as FTIR microspectrometer and FTIR imaging system, with the aid of pattern recognition and tissue microarray, greatly facilitated the large parallel scale investigation of molecular structure. The recent development of FTIR spectroscopic imaging has enhanced our capability to examine, on a microscopic scale, the spatial distribution of vibrational spectroscopic signatures of materials spanning the physical and biomedical disciplines. The integration of instrumentation development, theoretical analyses to provide guidelines for imaging practice, novel data processing algorithms, and the introduction of the technique to new fields. FTIR technique has helped analyze the complex components of bile stones, which persisted to be a vexing problem and causing high death rate in China. Besides, FTIR technology could provide reliable information in discriminating benign and malignancy. It has been used in detecting thyroid nodules, mammary gland, gastrointestinal tract, cardiovascular and prostate diseases, and parotid gland tissue in combination with ATR detecting device, and has broad clinical application prospects. Till now, FTIR technology has achieved the fast and accurate diagnosis for freshly dissected tissues such as discriminating thyroid carcinoma from nodular goiter intraoperatively. However, further investigations need to be done in this sphere to achieve greater accomplishments.
    Guang pu xue yu guang pu fen xi = Guang pu 01/2010; 30(1):30-4. DOI:10.3964/j.issn.1000-0593(2010)01-0030-05 · 0.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surface-enhanced Raman scattering (SERS) is a powerful technique for characterization of biological samples. SERS spectra from healthy brain tissue and tumors are obtained by sudden freezing of tissue in liquid nitrogen and crashing and mixing it with a concentrated silver colloidal suspension. The acquired spectra from tissues show significant spectral differences that can be used to identify whether it is from a healthy region or tumor. The most significant change on SERS spectra from the healthy/peripheral brain tissue to tumor is the increase of the ratio of the peaks at around 723 to 655 cm(-1). In addition, the spectral changes indicate that the protein content in tumors increases compared to the peripheral/healthy tissue as observed with tumor invasion. The preliminary results show that SERS spectra can be used for a quick diagnosis due to the simplicity of the sample preparation and the speed of the spectral acquisition.
    Applied Spectroscopy 10/2009; 63(10):1095-100. DOI:10.1366/000370209789553219 · 1.88 Impact Factor