Article

Metabolic surgery and cancer: protective effects of bariatric procedures.

Department of Surgery and Cancer, Imperial College London, London, England.
Cancer (Impact Factor: 4.9). 05/2011; 117(9):1788-99. DOI: 10.1002/cncr.25738
Source: PubMed

ABSTRACT The worldwide epidemic of obesity and the global incidence of cancer are both increasing. There is now epidemiological evidence to support a correlation between obesity, weight gain, and some cancers. Metabolic or bariatric surgery can provide sustained weight loss and reduced obesity-related mortality. These procedures can also improve the metabolic profile to decrease cardiovascular risk and resolve diabetes in morbidly obese patients. The operations offer several physiological steps, the so-called BRAVE effects: 1) bile flow alteration, 2) reduction of gastric size, 3) anatomical gut rearrangement and altered flow of nutrients, 4) vagal manipulation and 5) enteric gut hormone modulation. Metabolic operations are also associated with a significant reduction of cancer incidence and mortality. The cancer-protective role of metabolic surgery is strongest for female obesity-related tumors; however, the underlying mechanisms may involve both weight-dependent and weight-independent effects. These include the improvement of insulin resistance with attenuation of the metabolic syndrome as well as decreased oxidative stress and inflammation in addition to the beneficial modulation of sex steroids, gut hormones, cellular energetics, immune system, and adipokines. Elucidating the precise metabolic mechanisms of cancer prevention by metabolic surgery can increase our understanding of how obesity, diabetes, and metabolic syndrome are associated with cancer. It may also offer novel treatment strategies in the management of tumor generation and growth.

Download full-text

Full-text

Available from: Kamran Ahmed, Oct 08, 2014
0 Followers
 · 
134 Views
  • Source
    • "In contrast to reports from large-scale human epidemiological cohorts suggesting a reduced cancer risk following bariatric surgery (Ashrafian et al., 2011a), we have demonstrated increased fecal cytotoxicity in this Wistar rat model following RYGB surgery; which can be associated with increased colonic cancer risk (de Kok and van Maanen, 2000). Two possible explanations for the conflicting RYGB effects between humans and rats include: (i) the rat model is not translational to humans with regard to RYGB surgery, or more controversially that the RYGB surgery increases the cytotoxicity of feces, however human colonocytes, are subject to a high degree of oxidative stress and possess enzymes capable of detoxifying H 2 S and other toxins (Ramasamy et al., 2006), are resistant to this toxicity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bariatric surgery, also known as metabolic surgery, is an effective treatment for morbid obesity, which also offers pronounced metabolic effects including the resolution of type 2 diabetes and a decrease in cardiovascular disease and long-term cancer risk. However, the mechanisms of surgical weight loss and the long-term consequences of bariatric surgery remain unclear. Bariatric surgery has been demonstrated to alter the composition of both the microbiome and the metabolic phenotype. We observed a marked shift toward Gammaproteobacteria, particularly Enterobacter hormaechei, following Roux-en-Y gastric bypass (RYGB) surgery in a rat model compared with sham-operated controls. Fecal water from RYGB surgery rats was highly cytotoxic to rodent cells (mouse lymphoma cell line). In contrast, fecal water from sham-operated animals showed no/very low cytotoxicity. This shift in the gross structure of the microbiome correlated with greatly increased cytotoxicity. Urinary phenylacetylglycine and indoxyl sulfate and fecal gamma-aminobutyric acid, putrescine, tyramine, and uracil were found to be inversely correlated with cell survival rate. This profound co-dependent response of mammalian and microbial metabolism to RYGB surgery and the impact on the cytotoxicity of the gut luminal environment suggests that RYGB exerts local and global metabolic effects which may have an influence on long-term cancer risk and cytotoxic load.
    Frontiers in Microbiology 09/2011; 2:183. DOI:10.3389/fmicb.2011.00183 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bariatric surgery is increasingly performed worldwide to treat morbid obesity and is also known as metabolic surgery to reflect its beneficial metabolic effects especially with respect to improvement in type 2 diabetes. Understanding surgical weight loss mechanisms and metabolic modulation is required to enhance patient benefits and operative outcomes. The authors applied a parallel and statistically integrated bacterial profiling and metabonomic approach to characterise Roux-en-Y gastric bypass (RYGB) effects in a non-obese rat model. Substantial shifts of the main gut phyla towards higher concentrations of Proteobacteria (52-fold), specifically Enterobacter hormaechei, are shown. Low concentrations of Firmicutes (4.5-fold) and Bacteroidetes (twofold) in comparison with sham-operated rats were also found. Faecal extraction studies revealed a decrease in faecal bile acids and a shift from protein degradation to putrefaction through decreased faecal tyrosine with concomitant increases in faecal putrescine and diaminoethane. Decreased urinary amines and cresols were found and indices of modulated energy metabolism were demonstrated after RYGB, including decreased urinary succinate, 2-oxoglutarate, citrate and fumarate. These changes could also indicate renal tubular acidosis, which is associated with increased flux of mitochondrial tricarboxylic acid cycle intermediates. A surgically induced effect on the gut-brain-liver metabolic axis is inferred from modulated faecal γ-aminobutyric acid and glutamate. This profound co-dependence of mammalian and microbial metabolism, which is systematically altered after RYGB surgery, suggests that RYGB exerts local and global metabolic effects. The effect of RYGB surgery on the host metabolic-microbial cross-talk augments our understanding of the metabolic phenotype of bariatric procedures and can facilitate enhanced treatments for obesity-related diseases.
    Gut 05/2011; 60(9):1214-23. DOI:10.1136/gut.2010.234708 · 13.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Worldwide, obesity has become a major public health crisis. Overweight and obesity not only increase the risk of cardiovascular disease and type-2 diabetes mellitus but also are now known risk factors for a variety of cancer types. Among all cancers, increasing body mass index is associated most strongly with endometrial cancer incidence and death. The molecular mechanisms underlying how adipose tissue and obesity contribute to the pathogenesis of endometrial cancer are becoming better understood and have revealed a number of rational strategies, both behavioral and pharmaceutical, for the prevention of both primary and recurrent disease.
    American journal of obstetrics and gynecology 06/2011; 205(6):518-25. DOI:10.1016/j.ajog.2011.05.042 · 3.97 Impact Factor
Show more