Article

Mechanisms of Resolution of Inflammation A Focus on Cardiovascular Disease

Lipidomic Research Facility, UHI Department of Diabetes and Cardiovascular Science, Highland Diabetes Institute, Centre for Health Science, Old Perth Road, Inverness IV2 3JH, Scotland.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 5.53). 05/2011; 31(5):1001-6. DOI: 10.1161/ATVBAHA.110.213850
Source: PubMed

ABSTRACT The inflammatory response is an integral part of the innate immune mechanism that is triggered in response to a real or perceived threat to tissue homeostasis, with a primary aim of neutralizing infectious agents and initiating repair to damaged tissue. By design, inflammation is a finite process that resolves as soon as the threat of infection abates and sufficient repair to the tissue is complete. Resolution of inflammation involves apoptosis and subsequent clearance of activated inflammatory cells--a tightly regulated event. Chronic inflammation is a characteristic feature in virtually all inflammatory diseases, including atherosclerosis, and it is becoming increasingly clear that derangement of the processes usually involved in resolution of inflammation is an underlying feature of chronic inflammatory conditions. This review will draw on evidence from a range of diseases in which dysregulated inflammation is important, with particular emphasis on cardiovascular disease.

0 Followers
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of atherosclerosis involves an imbalanced lipid metabolism and a deregulated immune response culminating in chronic inflammation of the arterial wall. Recent studies show that endogenous ligands, such as modified plasma lipoproteins, can trigger pattern recognition receptors (PRR) of innate immunity for cellular and humoral reactions. The underlying molecular pathways remain less explored. In this study, we investigated the mechanisms of inflammatory effects of oxidized low-density lipoproteins (oxLDL) on human primary coronary artery smooth muscle cells (VSMC). We show that already low concentration of oxLDL initiated atherogenic signals triggering VSMC transition to proinflammatory phenotype. oxLDL impaired the expression of contractile proteins and myocardin in VSMC and initiated changes in cell functional responses, including expression of proinflammatory molecules. The effects of oxLDL were abolished by downregulation of the multifunctional urokinase receptor (uPAR). In response to oxLDL uPAR associated with CD36 and TLR4, the two main PRR for both pathogen and endogenous ligands. We demonstrate that uPAR association with CD36 and TLR4 mediated oxLDL-induced and NF-κB-dependent G-CSF and GM-CSF expression and changes in VSMC contractile proteins. uPAR-mediated release of G-CSF and GM-CSF by VSMC affected macrophage behavior and production of MCP-1. We provide evidence for functional relevance of our in vitro findings to in vivo human atherosclerotic tissues. Our data imply uPAR as a part of a PRR cluster interfering structurally and functionally with CD36 and TLR4 and responding to endogenous atherogenic ligands. They further point to specific function of each component of this cluster in mediating the ultimate signaling pattern.
    Journal of Molecular and Cellular Cardiology 11/2013; 66. DOI:10.1016/j.yjmcc.2013.11.005 · 5.22 Impact Factor
  • Source
    Arteriosclerosis Thrombosis and Vascular Biology 05/2011; 31(5):958-9. DOI:10.1161/ATVBAHA.111.227355 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isothiocyanates (ITC), derived from glucosinolates, are thought to be responsible for the chemoprotective actions conferred by higher cruciferous vegetable intake. Evidence suggests that isothiocyanates exert their effects through a variety of distinct but interconnected signaling pathways important for inhibiting carcinogenesis, including those involved in detoxification, inflammation, apoptosis, and cell cycle and epigenetic regulation, among others. This article provides an update on the latest research on isothiocyanates and these mechanisms, and points out remaining gaps in our understanding of these events. Given the variety of ITC produced from glucosinolates, and the diverse pathways on which these compounds act, a systems biology approach, in vivo, may help to better characterize their integrated role in cancer prevention. In addition, the effects of dose, duration of exposure, and specificity of different ITC should be considered.
    09/2011; 2(10):579-87. DOI:10.1039/c1fo10114e