Article

Alpha4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol.

Ernest Gallo Clinic and Research Center, University of California at San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA.
Addiction Biology (Impact Factor: 5.91). 04/2011; 17(2):309-21. DOI: 10.1111/j.1369-1600.2011.00333.x
Source: PubMed

ABSTRACT The α4βδ gamma-aminobutyric acid A receptor (GABA(A) R) has been proposed to mediate the rewarding effects of low-to-moderate concentrations of alcohol (ethanol) that approximate those achieved by social drinking. If this is true, then this receptor should be necessary for the reinforcing effects of ethanol as assessed in an instrumental self-administration procedure in which rats are trained to lever press for oral ethanol. We used viral-mediated RNA interference to transiently reduce expression of the α4 GABA(A) R subunit in the shell region of the nucleus accumbens (NAc). We found that responding for ethanol was significantly reduced after α4 reductions in the NAc shell, but not NAc core. This reduction was specific to ethanol, as responding for sucrose was not altered. The presence of ethanol was also required as unreinforced responding for ethanol in subjects previously trained to respond for ethanol (i.e. responding during an extinction test) was not altered. In addition, responding during reinforced sessions was not altered during the initial 5 minutes of the session, but decreased after 5 minutes, following multiple reinforced responses. Together, these findings indicate that the α4 GABA(A) R subunit in the NAc shell is necessary for the instrumental reinforcing effects of oral ethanol, further supporting a role for α4-containing GABA(A) Rs in the rewarding/reinforcing effects of ethanol. Possible pharmacological and non-pharmacological explanations for these effects are considered.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that GABA(A) receptor ligands may regulate ethanol intake via effects at both synaptic and extrasynaptic receptors. For example, the endogenous neurosteroid, allopregnanolone (ALLO) has a similar pharmacological profile as ethanol, and it alters ethanol intake in rodent models. Additionally, recent evidence suggests that δ-subunit-containing extrasynaptic GABA(A) receptors may confer high sensitivity to both ethanol and neurosteroids. The purpose of the present study was to determine the effects of ganaxolone (GAN; an ALLO analog) and gaboxadol (THIP; a GABA(A) receptor agonist with selectivity for the extrasynaptic δ-subunit) on ethanol intake, drinking patterns, and bout characteristics in operant and limited-access self-administration procedures. In separate studies, the effects of GAN (0-10 mg/kg) and THIP (2-16 mg/kg) were tested in C57BL/6J male mice provided with 2-h access to a two-bottle choice of water or 10% ethanol or trained to respond for 30 min of access to 10% ethanol. GAN had no overall significant effect on operant ethanol self-administration, but tended to decrease the latency to consume the first bout. In the limited-access procedure, GAN dose-dependently decreased ethanol intake. THIP dose-dependently decreased ethanol intake in both paradigms, altering both the consummatory and appetitive processes of operant self-administration as well as shifting the drinking patterns in both procedures. These results add to literature suggesting time-dependent effects of neurosteroids to promote the onset, and to subsequently decrease, ethanol drinking behavior, and they support a role for extrasynaptic GABA(A) receptor activation in ethanol reinforcement.
    Neuropharmacology 05/2012; 63(4):555-64. · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methamphetamine (METH) is an addictive stimulant drug. In addition to drug craving and lethargy, METH withdrawal is associated with stress-triggered anxiety. However, the cellular basis for this stress-triggered anxiety is not understood. The present results suggest that during METH withdrawal (24 h) following chronic exposure (3 mg/kg, i.p. for 3-5 weeks) of adult, male mice, the effect of one neurosteroid released by stress, 3α,5α-THP (3α-OH-5α-pregnan-20-one), and its 3α,5β isomer reverse to trigger anxiety assessed by the acoustic startle response (ASR), in contrast to their usual anti-anxiety effects. This novel effect of 3α,5β-THP was due to increased (3-fold) hippocampal expression of α4βδ GABAA receptors (GABARs) during METH withdrawal (24 h - 4 wk) because anxiogenic effects of 3α,5β-THP were not seen in α4-/- mice. 3α,5β-THP reduces current at these receptors when it is hyperpolarizing, as observed during METH withdrawal. As a result, 3α,5β-THP (30 nM) increased neuronal excitability, assessed with current clamp and cell-attached recordings in CA1 hippocampus, one CNS site which regulates anxiety. α4βδ GABARs were first increased 1 h after METH exposure and recovered 6 wk after METH withdrawal. Similar increases in α4βδ GABARs and anxiogenic effects of 3α,5β-THP were noted in rats during METH withdrawal (24 h). In contrast, the ASR was increased by chronic METH treatment in the absence of 3α,5β-THP administration due to its stimulant effect. Although α4βδ GABARs were increased by chronic METH treatment, the GABAergic current recorded from hippocampal neurons at this time was a depolarizing, shunting inhibition, which was potentiated by 3α,5β-THP. This steroid reduced neuronal excitability and anxiety during chronic METH treatment, consistent with its typical effect. Flumazenil (10 mg/kg, i.p., 3x) reduced α4βδ expression and prevented the anxiogenic effect of 3α,5β-THP after METH withdrawal. Our findings suggest a novel mechanism underlying stress-triggered anxiety after METH withdrawal mediated by α4βδ GABARs.
    Neuroscience 08/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Personalized treatment for psychopathologies, in particular alcoholism, is highly dependent upon our ability to identify patterns of genetic and environmental effects that influence a person's risk. Unfortunately, array-based whole genome investigations into heritable factors that explain why one person becomes dependent upon alcohol and another does not, have indicated that alcohol's genetic architecture is highly complex. That said, uncovering and interpreting the missing heritability in alcohol genetics research has become all the more important, especially since the problem may extend to our inability to model the cumulative and combinatorial relationships between common and rare genetic variants. As numerous studies begin to illustrate the dependency of alcohol pharmacotherapies on an individual's genotype, the field is further challenged to identify new ways to transcend agnostic genomewide association approaches. We discuss insights from genetic studies of alcohol related diseases, as well as issues surrounding alcohol's genetic complexity and etiological heterogeneity. Finally, we describe the need for innovative systems-based approaches (Systems Genetics) that can provide additional statistical power that can enhance future gene-finding strategies and help to identify heretofore-unrealized mechanisms that may provide new targets for prevention/treatments efforts. Emerging evidence from early studies suggest that Systems Genetics has the potential to organize our neurological, pharmacological, and genetic understanding of alcohol dependence into a biologically plausible framework that represents how perturbations across evolutionarily robust biological systems determine susceptibility to alcohol dependence.
    Drug and alcohol dependence 07/2012; 125(3):179-91. · 3.60 Impact Factor

Full-text

View
0 Downloads
Available from