Article

Alpha4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol.

Ernest Gallo Clinic and Research Center, University of California at San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA.
Addiction Biology (Impact Factor: 5.91). 04/2011; 17(2):309-21. DOI: 10.1111/j.1369-1600.2011.00333.x
Source: PubMed

ABSTRACT The α4βδ gamma-aminobutyric acid A receptor (GABA(A) R) has been proposed to mediate the rewarding effects of low-to-moderate concentrations of alcohol (ethanol) that approximate those achieved by social drinking. If this is true, then this receptor should be necessary for the reinforcing effects of ethanol as assessed in an instrumental self-administration procedure in which rats are trained to lever press for oral ethanol. We used viral-mediated RNA interference to transiently reduce expression of the α4 GABA(A) R subunit in the shell region of the nucleus accumbens (NAc). We found that responding for ethanol was significantly reduced after α4 reductions in the NAc shell, but not NAc core. This reduction was specific to ethanol, as responding for sucrose was not altered. The presence of ethanol was also required as unreinforced responding for ethanol in subjects previously trained to respond for ethanol (i.e. responding during an extinction test) was not altered. In addition, responding during reinforced sessions was not altered during the initial 5 minutes of the session, but decreased after 5 minutes, following multiple reinforced responses. Together, these findings indicate that the α4 GABA(A) R subunit in the NAc shell is necessary for the instrumental reinforcing effects of oral ethanol, further supporting a role for α4-containing GABA(A) Rs in the rewarding/reinforcing effects of ethanol. Possible pharmacological and non-pharmacological explanations for these effects are considered.

0 Bookmarks
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ(-/-) or α4(-/-) mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4(-/-) mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4(D1-/-)) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4(-/-) or α4(D1-/-) mice, blocked cocaine enhancement of CPP. In comparison, α4(D2-/-) mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors.
    Journal of Neuroscience 01/2014; 34(3):823-38. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research has demonstrated a complicated role for stress and HPA axis activation in potentiating various cocaine-related behaviors in preclinical models of drug dependence. However, the investigation of several antiglucocorticoid therapies has yielded equivocal results in reducing cocaine-related behaviors, possibly because of varying mechanisms of actions. Specifically, research suggests that metyrapone (a corticosterone synthesis inhibitor) may reduce cocaine self-administration in rats via a nongenomic, extra-adrenal mechanism without altering plasma corticosterone. In the current experiments, male rats were trained to self-administer cocaine infusions and food pellets in a multiple, alternating schedule of reinforcement. Metyrapone pretreatment dose-dependently decreased cocaine self-administration as demonstrated previously. Pharmacological inhibition of neurosteroid production by finasteride had significant effects on cocaine self-administration, regardless of metyrapone pretreatment. However, metyrapone's effects on cocaine self-administration were significantly attenuated with bicuculline pretreatment, suggesting a role for GABA-active neurosteroids in cocaine-reinforced behaviors. In vitro binding data also confirmed that metyrapone does not selectively bind to GABA-related proteins. The results of these experiments support the hypothesis that metyrapone may increase neurosteroidogenesis to produce effects on cocaine-related behaviors.
    Behavioural brain research. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol use disorders (AUD) are defined as alcohol abuse and alcohol dependence, which create large problems both for society and for the drinkers themselves. To date, no therapeutic can effectively solve these problems. Understanding the underlying mechanisms leading to AUD is critically important for developing effective and safe pharmacological therapies. Benzodiazepines (BZs) are used to reduce the symptoms of alcohol withdrawal syndrome. However, frequent use of BZs causes cross-tolerance, dependence, and cross-addiction to alcohol. The FDA-approved naltrexone and acamprosate have shown mixed results in clinical trials. Naltrexone is effective to treat alcohol dependence (decreased length and frequency of drinking bouts), but its severe side effects, including withdrawal symptoms, are difficult to overcome. Acamprosate showed efficacy for treating alcohol dependence in European trials, but two large US trials have failed to confirm the efficacy. Another FDA-approved medication, disulfiram, does not diminish craving, and it causes a peripheral neuropathy. Kudzu is the only natural medication mentioned by the National Institute on Alcohol Abuse and Alcoholism, but its mechanisms of action are not yet established. It has been recently shown that dihydromyricetin, a flavonoid purified from Hovenia, has unique effects on GABAA receptors and blocks ethanol intoxication and withdrawal in alcoholic animal models. In this article, we review the role of GABAA receptors in the treatment of AUD and currently available and potentially novel pharmacological agents.
    Acta Pharmacologica Sinica 07/2014; · 2.35 Impact Factor

Full-text

Download
0 Downloads
Available from