Article

Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes.

REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
British Journal of Pharmacology (Impact Factor: 5.07). 04/2011; 165(4b):1017-33. DOI: 10.1111/j.1476-5381.2011.01453.x
Source: PubMed

ABSTRACT 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects.
Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC).
5-HT, dopamine, l-DOPA, DOPAC and MDMA metabolites α-MeDA, N-Me-α-MeDA and 5-(GSH)-α-MeDA, concentration- and time-dependently increased H(2) O(2 ) production, which was significantly reduced by the antioxidants N-acetyl-l-cysteine (NAC), ascorbic acid and melatonin. From experiments with MAO inhibitors, it was observed that H(2) O(2) generation induced by 5-HT was totally dependent on MAO-related metabolism, while for dopamine, it was a minor pathway. The MDMA metabolites, dopamine, l-DOPA and DOPAC concentration-dependently increased quinoproteins formation and, like 5-HT, altered the synaptosomal glutathione status. Finally, none of the compounds modified the number of polarized mitochondria in the synaptosomal preparations, and the compounds' pro-oxidant effects were unaffected by prior mitochondrial depolarization, excluding a significant role for mitochondrial-dependent mechanisms of toxicity in this experimental model.
MDMA metabolites along with high levels of monoamine neurotransmitters can be major effectors of neurotoxicity induced by Ecstasy.

0 Bookmarks
 · 
240 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have recently shown that chronic exposure to 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") of adolescent mice exacerbates dopamine neurotoxicity and neuroinflammatory effects elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the substantia nigra and striatum at adulthood. The present study investigated whether the amplification of MPTP effects by previous treatment with MDMA extends to the limbic and cortical regions and consequently affects cognitive performance. Mice received MDMA (10 mg/kg, twice a day/twice a week) for 9 weeks, followed by MPTP (20 mg/kg × 4 administrations), starting 2 weeks after MDMA discontinuation. Complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) were evaluated by immunohistochemistry in both the hippocampus and the medial prefrontal cortex (mPFC) to measure microglia and astroglia activation. These neurochemical evaluations were paired with an assessment of cognitive performance by means of the novel object recognition (NOR) and spontaneous alternation tasks. MPTP administration to MDMA-pretreated mice elicited a stronger activation of CD11b and GFAP in both the hippocampus and the mPFC compared with either substance administered alone. Furthermore, NOR performance was lower in MDMA-pretreated mice administered MPTP compared with mice that received either substance alone. These results demonstrate that MDMA-MPTP negative interactions extend to the limbic and cortical regions and may result in cognitive impairment, providing further evidence that exposure to MDMA may amplify the effects of later neurotoxic insults.
    Psychopharmacology 04/2014; · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the presence of endogenous antioxidants in erythrocytes, these cells are highly susceptible to oxidative damage and some exogenous antioxidants, such as carotenoids, are able to inhibit the pro-oxidant effect provided by reactive oxygen species. In this study, we evaluated the potential of carotenoids usually detected in human blood plasma (β-carotene, zeaxanthin, lutein, β-cryptoxanthin and lycopene) to prevent the oxidative damage in erythrocytes. Human erythrocytes were subjected to induced oxidative damage and the following biomarkers of oxidative stress were monitored: lipid peroxidation [induced by tert-butyl hydroperoxide (tBHP) or by 2,2´-azobis (2-methylpropionamidine) dihydrochloride (AAPH)] and AAPH-induced oxidation of hemoglobin and depletion of glutathione. When tBHP was used to induce lipid peroxidation, lycopene was the most efficient carotenoid (IC50=2.2±0.4μM), whilst lutein was the most efficient (IC50=2.5±0.7μM) when peroxyl radicals (ROO(●)) were generated by AAPH. In relation to the hemoglobin oxidation induced by AAPH, β-carotene and zeaxanthin were the most efficient antioxidants (IC50=2.9±0.3μM and 2.9±0.1μM, respectively). Surprisingly β-cryptoxanthin and lycopene did not inhibit hemoglobin oxidation or lipid peroxidation when induced by AAPH, even at the highest tested concentration (3μM). Additionally, the tested carotenoids did not prevent ROO(●)- mediated GSH depletion and GSSG formation probably due to the lack of interaction between carotenoids (apolar) and glutathione (polar). Our study contributes with important insights that carotenoids may exert therapeutical potential to act as natural antioxidant to prevent ROO(●)-induced toxicity in human erythrocytes.
    Life sciences 01/2014; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy"), is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Mitochondrial neuronal trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletions have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and its 6 major in vivo metabolites, each compound at 10 μM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the over-expression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons over-expressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.
    Toxicological Sciences 03/2014; · 4.33 Impact Factor

Full-text (2 Sources)

View
69 Downloads
Available from
May 20, 2014