Article

Direct Visualization of Parkinson's Disease by In Vivo Human Brain Imaging Using 7.0T Magnetic Resonance Imaging

Neuroscience Research Institute, Gachon University of Medicine and Science, Namdong-gu, Incheon, South Korea.
Movement Disorders (Impact Factor: 5.63). 03/2011; 26(4):713-8. DOI: 10.1002/mds.23465
Source: PubMed

ABSTRACT Parkinson's disease (PD) is a neurodegenerative disorder resulting from progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. Therefore, imaging of the SN has been regarded to hold greatest potential for use in the diagnosis of PD. At the 7.0T magnetic resonance imaging (MRI), it is now possible to delineate clearly the shapes and boundaries of the SN. We scanned eight early and two advanced PD patients, along with nine age-matched control subjects, using a 7.0T MRI in an attempt to directly visualize the SN and quantify the differences in shape and boundaries of SN between PD subjects in comparison with the normal control subjects. In the normal controls, the boundaries between the SN and crus cerebri appear smooth, and clean "arch" shapes that stretch ventrally from posterior to anterior. In contrast, these smooth and clean arch-like boundaries were lost in PD subjects. The measured correlation analyses show that, in PD patients, there is age-dependent correlation and substantially stronger UPDRS motor score-dependent correlation. These results suggest that, by using 7.0T MRI, it appears possible to use these visible and distinctive changes in morphology as a diagnostic marker of PD.

Full-text

Available from: Se-Hong Oh, Jan 02, 2015
0 Followers
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We characterize the contrast behavior of substantia nigra (SN) in both magnetization transfer (MT) imaging, which is believed to be sensitive to neuromelanin (NM), and susceptibility weighted imaging (SWI). Images were acquired with a MT prepared dual echo gradient echo sequence. The first echo was taken as the MT contrast image and the second was used to generate the SWI image. SN volumes were segmented from these two types of images using a thresholding method. The spatial and signal characteristics of the extracted SWI and MT volumes were compared. Both images showed the presence of SN but the volumes of the SN identified in the two are spatially incongruent. The MT volume was more caudal than the SWI volume and with only a 12% overlap between the two volumes. Considering the SN volumes in each hemisphere separately, the average distances between the centers of mass of the volumes from the two types images are 5.1±1.1mm and 4.1±1.2mm, respectively. The frequency offsets (homodyne filtered phase/echo time) for the volumes derived from MT (NM) images and SWI images are 0.09±0.32 radians/s and -1.12±0.57 radians/s (p<0.0001), respectively. The MT contrasts for the two volumes are 0.16±0.02 and 0.10±0.03 (p<0.001), respectively. Our results indicate that the two contrasts are sensitive to different portions of the SN, with MT seeing the more caudal portion of the SN than SWI, likely due to variations of NM and iron content in the SN. Despite the small overlap, these regions are complementary. Our results provide a new understanding of the contrast behavior of the SN in the two imaging approaches commonly used to image it and indicate that using both may yield a more comprehensive visualization of the SN. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 02/2015; 112. DOI:10.1016/j.neuroimage.2015.02.045 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of Parkinson's disease (PD) is the progressive neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Dopaminergic denervation is commonly imaged using radiotracer imaging in target structures such as the striatum. Until recently, imaging made only a modest contribution to detecting neurodegenerative changes in the substantia nigra (SN) directly. Histologically, the SN is subdivided into the ventral pars reticulata and the dorsal pars compacta, which is composed of dopaminergic neurons. In humans, dopaminergic neurons, which are known to accumulate neuromelanin, form clusters of cells (nigrosomes) that penetrate deep into the SN pars reticulata (SNr). The SNr contains higher levels of iron than the SNc in normal subjects. Neuromelanin and T2*-weighted imaging therefore better detect the SNc and the SNr, respectively. The development of ultra-high field 7 Tesla (7T) magnetic resonance imaging (MRI) provided the increase in spatial resolution and in contrast that was needed to detect changes in SN morphology. 7T MRI allows visualization of nigrosome-1 as a hyperintense signal area on T2*-weighted images in the SNc of healthy subjects and its absence in PD patients, probably because of the loss of melanized neurons and the increase of iron deposition. This review is designed to provide a better understanding of the correspondence between the outlines and subdivisions of the SN detected using different MRI contrasts and the histological organization of the SN. The recent findings obtained at 7T will then be presented in relation to histological knowledge. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 11/2014; 29(13). DOI:10.1002/mds.26043 · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) is a form of MRI that has been used extensively to map in vivo the white matter architecture of the human brain. It is also used for mapping subcortical nuclei because of its general sensitivity to tissue orientation differences and effects of iron accumulation on the diffusion signal. While DTI provides excellent spatial resolution in individual subjects, a challenge is visualizing consistent patterns of diffusion orientation across subjects. Here we present a simple method for averaging direction-encoded color anisotropy maps in standard space, explore this technique for visualizing the substantia nigra (SN) in relation to other midbrain structures, and show with signal-to-noise analysis that averaging improves the direction-encoded color signature. SN is distinguished on averaged maps from neighboring structures, including red nucleus (RN) and cerebral crus, and is proximal to SN location from existing brain atlases and volume of interest (VOI) delineation on individual scans using two blinded raters.
    Computers in Biology and Medicine 05/2014; 51C:104-110. DOI:10.1016/j.compbiomed.2014.05.004 · 1.48 Impact Factor