Article

Membrane cholesterol modulates the cytolytic mechanism of myotoxin II, a Lys49 phospholipase A2 homologue from the venom of Bothrops asper.

Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
Cell Biochemistry and Function (Impact Factor: 1.85). 04/2011; 29(5):365-70. DOI: 10.1002/cbf.1758
Source: PubMed

ABSTRACT Lys49 phospholipase A2 (PLA2) homologues present in crotalid snake venoms lack enzymatic activity, yet they induce skeletal muscle necrosis by a membrane permeabilizing mechanism whose details are only partially understood. The present study evaluated the effect of altering the membrane cholesterol content on the cytolytic activity of myotoxin II, a Lys49 PLA2 isolated from the venom of Bothrops asper, using the myogenic cell line C2C12 as a model target. Cell membrane cholesterol depletion by methyl-β-cyclodextrin (MβCD) treatment enhanced the cytolytic action of myotoxin II, as well as of its bioactive C-terminal synthetic peptide p(115-129) . Conversely, cell membrane cholesterol enrichment by preformed cholesterol-MβCD complexes reduced the cytolytic effect of myotoxin II. The toxic actions of myotoxin I, a catalytically active PLA2 from the same venom, as well as of the cytolytic peptide melittin from bee venom, also increased in cholesterol-depleted cells. Although physical and functional changes resulting from variations in membrane cholesterol are complex, these findings suggest that membrane fluidity could be a relevant parameter to explain the observed modulation of the cytolytic mechanism of myotoxin II, possibly influencing bilayer penetration. In concordance, the cytolytic effect of myotoxin II decreased in direct proportion to lower temperature, a physical factor that affects membrane fluidity. In conclusion, physicochemical properties that depend on membrane cholesterol content significantly influence the cytolytic mechanism of myotoxin II, reinforcing the concept that the primary site of action of Lys49 PLA2 myotoxins is the plasma membrane.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently described the isolation of a basic PLA2 (PhTX-I) from Porthidium hyoprora snake venom. This toxin exhibits high catalytic activity, induces in vivo myotoxicity, moderates footpad edema, and causes in vitro neuromuscular blockade. Here, we describe the chemical modifications of specific amino acid residues (His, Tyr, Lys, and Trp), performed in PhTX-I, to study their effects on the structural, enzymatic, and pharmacological properties of this myotoxin. After chemical treatment, a single His, 4 Tyr, 7 Lys, and one Trp residues were modified. The secondary structure of the protein remained unchanged as measured by circular dichroism; however other results indicated the critical role played by Lys and Tyr residues in myotoxic, neurotoxic activities and mainly in the cytotoxicity displayed by PhTX-I. His residue and therefore catalytic activity of PhTX-I are relevant for edematogenic, neurotoxic, and myotoxic effects, but not for its cytotoxic activity. This dissociation observed between enzymatic activity and some pharmacological effects suggests that other molecular regions distinct from the catalytic site may also play a role in the toxic activities exerted by this myotoxin. Our observations supported the hypothesis that both the catalytic sites as the hypothetical pharmacological sites are relevant to the pharmacological profile of PhTX-I.
    BioMed research international. 01/2013; 2013:103494.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lys49-PLA(2) myotoxins, an important component of various viperid snake venoms, are a class of PLA(2)-homolog proteins deprived of catalytic activity. Similar to enzymatically active PLA(2) (Asp49) and to other classes of myotoxins, they cause severe myonecrosis. Moreover, these toxins are used as tools to study skeletal muscle repair and regeneration, a process that can be very limited after snakebites. In this work, the cytotoxic effect of different myotoxins, Bothrops asper Lys49 and Asp49-PLA(2), Notechis scutatus notexin and Naja mossambica cardiotoxin, was evaluated on macrophages, cells that have a key role in muscle regeneration. Only the Lys49-myotoxin was found to trigger a rapid asynchronous death of mouse peritoneal macrophages and macrophagic cell lines through a process that involves ATP release, ATP-induced ATP release and that is inhibited by various purinergic receptor antagonists. ATP leakage is induced also at sublytical doses of the Lys49-myotoxin, it involves Ca(2+) release from intracellular stores, and is reduced by inhibitors of VSOR and the maxi-anion channel. The toxin-induced cell death is different from that caused by high concentration of ATP and appears to be linked to localized purinergic signaling. Based on present findings, a mechanism of cell death is proposed that can be extended to other cytolytic proteins and peptides.
    Cell Death & Disease 01/2012; 3:e343. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Snake venoms often contain toxins that cause a rapid necrosis of skeletal muscle fibers, referred to as myotoxins. The most common among them are phospholipases A(2) (PLA(2)s), enzymes that have two independent evolutionary origins in snake venoms. Within the group II PLA(2)s found in viperid venoms, a particular subgroup emerged, in which the otherwise conserved Asp49 of their catalytic center is replaced by Lys49. These intriguing proteins, referred to as Lys49 myotoxins, lost the ability to catalyze phospholipid hydrolysis, but still induce myonecrosis by a non-enzymatic mechanism based on membrane permeabilization as the critical event. Such mechanism is only partially understood. This review briefly describes the general structural and functional characteristics of the Lys49 myotoxins, and summarizes four proposed models of their functional "toxic site". Finally, it discusses some novel insights into their mode of action, in particular examining arguments and experimental observations that could shed light on the possible nature of their membrane target on skeletal muscle cells, which remains elusive.
    Toxicon 09/2012; 60(4):520-30. · 2.92 Impact Factor