Article

Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice

Neurobiology and Molecular Pharmacology, Centre de Psychiatrie et Neurosciences, UMR-894 INSERM/Université Paris Descartes, Paris, France.
The Journal of clinical investigation (Impact Factor: 13.77). 05/2011; 121(5):1846-57. DOI: 10.1172/JCI43992
Source: PubMed

ABSTRACT The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) have emerged as key mediators in the pathophysiology of several mood disorders, including anxiety and depression. However, therapeutic compounds that interact with TrkB receptors have been difficult to develop. Using a combination of structure-based in silico screening and high-capacity functional assays in recombinant and neuronal cells, we identified a low-molecular weight TrkB ligand (ANA-12) that prevented activation of the receptor by BDNF with a high potency. ANA-12 showed direct and selective binding to TrkB and inhibited processes downstream of TrkB without altering TrkA and TrkC functions. KIRA-ELISA analysis demonstrated that systemic administration of ANA-12 to adult mice decreased TrkB activity in the brain without affecting neuronal survival. Mice administered ANA-12 demonstrated reduced anxiety- and depression-related behaviors on a variety of tests predictive of anxiolytic and antidepressant properties in humans. This study demonstrates that structure-based virtual screening strategy can be an efficient method for discovering potent TrkB-selective ligands that are active in vivo. We further propose that ANA-12 may be a valuable tool for studying BDNF/TrkB signaling and may constitute a lead compound for developing the next generation of therapeutic agents for the treatment of mood disorders.

Download full-text

Full-text

Available from: Maxime Cazorla, Sep 01, 2015
1 Follower
 · 
201 Views
 · 
51 Downloads
  • Source
    • "This suggests that in the clinical arena, therapeutics targeting this pathway could be used for a brief period of time to achieve longlasting effects on chronic pain. TrkB-based therapeutics are under investigation for a wide variety of neurological disorders (Cazorla et al. 2011); therefore, clinical opportunities along this front may arise in the near future. In the longer term, continued research into the role of aPKCs in pain chronification may lead to important insight into a specific role for certain aPKC isoforms in the maintenance of priming. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nociceptors and neurons in the central nervous system (CNS) that receive nociceptive input show remarkable plasticity in response to injury. This plasticity is thought to underlie the development of chronic pain states. Hence, further understanding of the molecular mechanisms driving and maintaining this plasticity has the potential to lead to novel therapeutic approaches for the treatment of chronic pain states. An important concept in pain plasticity is the presence and persistence of "hyperalgesic priming." This priming arises from an initial injury and results in a remarkable susceptibility to normally subthreshold noxious inputs causing a prolonged pain state in primed animals. Here we describe our current understanding of how this priming is manifested through changes in signaling in the primary nociceptor as well as through memory like alterations at CNS synapses. Moreover, we discuss how commonly utilized analgesics, such as opioids, enhance priming therefore potentially contributing to the development of persistent pain states. Finally we highlight where these priming models draw parallels to common human chronic pain conditions. Collectively, these advances in our understanding of pain plasticity reveal a variety of targets for therapeutic intervention with the potential to reverse rather than palliate chronic pain states.
    Handbook of experimental pharmacology 01/2015; 227:15-37. DOI:10.1007/978-3-662-46450-2_2
  • Source
    • "The dose of rapamycin was selected as previously reported (Li et al., 2010 2011). The doses of 7,8-DHF and ANA-12 were also selected as previously reported (Ren et al., 2013 2014; Cazorla et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), signaling represent potential therapeutic targets for major depressive disorder. The purpose of this study is to examine whether TrkB ligands show antidepressant effects in an inflammation-induced model of depression. In this study, we examined the effects of TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist ANA-12 on depression-like behavior and morphological changes in mice previously exposed to lipopolysaccharide (LPS). Protein levels of BDNF, phospho-TrkB (p-TrkB), and TrkB in the brain regions were also examined. LPS caused a reduction of BDNF in the CA3 and dentate gyrus (DG) of the hippocampus and prefrontal cortex (PFC), whereas LPS increased BDNF in the nucleus accumbens (NAc). Dexamethason suppression tests showed hyperactivity of the hypothalamic-pituitary-adrenal axis in LPS-treated mice. Intraperitoneal (i.p.) administration of 7,8-DHF showed antidepressant effects on LPS-induced depression-like behavior, and i.p. pretreatment with ANA-12 blocked its antidepressant effects. Surprisingly, ANA-12 alone showed antidepressant-like effects on LPS-induced depression-like behavior. Furthermore, bilateral infusion of ANA-12 into the NAc showed antidepressant effects. Moreover, LPS caused a reduction of spine density in the CA3, DG, and PFC, whereas LPS increased spine density in the NAc. Interestingly, 7,8-DHF significantly attenuated LPS-induced reduction of p-TrkB and spine densities in the CA3, DG, and PFC, whereas ANA-12 significantly attenuated LPS-induced increases of p-TrkB and spine density in the NAc. The results suggest that LPS-induced inflammation may cause depression-like behavior by altering BDNF and spine density in the CA3, DG, PFC, and NAc, which may be involved in the antidepressant effects of 7,8-DHF and ANA-12, respectively. © The Author 2015. Published by Oxford University Press on behalf of CINP.
    The International Journal of Neuropsychopharmacology 10/2014; 18(4). DOI:10.1093/ijnp/pyu077 · 5.26 Impact Factor
  • Source
    • "Animals received either drug (1 mg/kg for acute on days 5 and 12, or 0.5 mg/kg once daily for concomitant treatment with morphine) or vehicle, daily via i.p. injection 1 hour before testing (100uL volume). The selected drug doses and timing of administration were in accordance with prior publications [50–52]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The long term use of opioids for the treatment of pain leads to a group of maladaptations which includes opioid-induced hyperalgesia (OIH). OIH typically resolves within few days after cessation of morphine treatment in mice but is prolonged for weeks if histone deacetylase (HDAC) activity is inhibited during opioid treatment. The present work seeks to identify gene targets supporting the epigenetic effects responsible for OIH prolongation. Results Mice were treated with morphine according to an ascending dose protocol. Some mice also received the selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) additionally. Chronic morphine treatment with simultaneous HDAC inhibition enhanced OIH, and several spinal cord genes were up-regulated. The expression of Bdnf (Brain-derived neurotrophic factor) and Pdyn (Prodynorphin) were most closely related to the observed behavioral changes. ChIP (Chromatin immuoprecipation) assays demonstrated that promoter regions of Pdyn and Bdnf were strongly associated with aceH3K9 (Acetylated histone H3 Lysine9) after morphine and SAHA treatment. Furthermore, morphine treatment caused an increase in spinal BDNF and dynorphin levels, and these levels were further increased in SAHA treated mice. The selective TrkB (tropomyosin-receptor-kinase) antagonist ANA-12 reduced OIH when given one or seven days after cessation of morphine. Treatment with the selective kappa opioid receptor antagonist nor-BNI also reduced established OIH. The co-administration of either receptor antagonist agent daily with morphine resulted in attenuation of hyperalgesia present one day after cessation of treatment. Additionally, repeated morphine exposure induced a rise in BDNF expression that was associated with an increased number of BDNF+ cells in the spinal cord dorsal horn, showing strong co-localization with aceH3K9 in neuronal cells. Lastly, spinal application of low dose BDNF or Dynorphin A after resolution of OIH produced mechanical hypersensitivity, with no effect in controls. Conclusions The present study identified two genes whose expression is regulated by epigenetic mechanisms during morphine exposure. Treatments aimed at preventing the acetylation of histones or blocking BDNF and dynorphin signaling may reduce OIH and improve long-term pain using opioids.
    Molecular Pain 09/2014; 10(1):59. DOI:10.1186/1744-8069-10-59 · 3.53 Impact Factor
Show more