Biophysical Regulation of Histone Acetylation in Mesenchymal Stem Cells

Bioengineering College, Chongqing University, Chongqing, China.
Biophysical Journal (Impact Factor: 3.83). 04/2011; 100(8):1902-9. DOI: 10.1016/j.bpj.2011.03.008
Source: PubMed

ABSTRACT Histone deacetylation and acetylation are catalyzed by histone deacetylase (HDAC) and histone acetyltransferase, respectively, which play important roles in the regulation of chromatin remodeling, gene expression, and cell functions. However, whether and how biophysical cues modulate HDAC activity and histone acetylation is not well understood. Here, we tested the hypothesis that microtopographic patterning and mechanical strain on the substrate regulate nuclear shape, HDAC activity, and histone acetylation. Bone marrow mesenchymal stem cells (MSCs) were cultured on elastic membranes patterned with parallel microgrooves 10 μm wide that kept MSCs aligned along the axis of the grooves. Compared with MSCs on an unpatterned substrate, MSCs on microgrooves had elongated nuclear shape, a decrease in HDAC activity, and an increase of histone acetylation. To investigate anisotropic mechanical sensing by MSCs, cells on the elastic micropatterned membranes were subjected to static uniaxial mechanical compression or stretch in the direction parallel or perpendicular to the microgrooves. Among the four types of loads, compression or stretch perpendicular to the microgrooves caused a decrease in HDAC activity, accompanied by the increase in histone acetylation and slight changes of nuclear shape. Knocking down nuclear matrix protein lamin A/C abolished mechanical strain-induced changes in HDAC activity. These results demonstrate that micropattern and mechanical strain on the substrate can modulate nuclear shape, HDAC activity, and histone acetylation in an anisotropic manner and that nuclear matrix mediates mechanotransduction. These findings reveal a new mechanism, to our knowledge, by which extracellular biophysical signals are translated into biochemical signaling events in the nucleus, and they will have significant impact in the area of mechanobiology and mechanotransduction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence suggests that the mesenchymal stem cells (MSCs) derived from placenta of fetal origin (fPMSCs) are superior to MSCs of other sources for cell therapy. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications, during which MSCs may undergo genetic and/or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic and epigenetic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical settings. To date, the genetic and epigenetic stability of fPMSCs after long-term in vitro expansion has not been fully investigated. In this report, alterations to histone acetylation and consequence on the expression pattern of fPMSCs following in vitro propagation under serum-free conditions were explored. The results show that fPMSCs maintain their MSC characteristics before they reached a senescent state. Furthermore, acetylation modification patterns were changed in fPMSCs along with gradually increased global histone deacetylase (HDAC) activity and expression of HDAC subtypes HDAC4, HDAC5 and HDAC6, as well as a down-regulated global histone H3/H4 acetylation during in vitro culturing. In line with the acetylation alterations, the expression of oncogenes Oct4, Sox2 and TERT were significantly decreased over the propagation period. Of note, the down-regulation of Oct4 was strongly associated with changes in acetylation. Intriguingly, telomere length in fPMSCs did not significantly change during the propagating process. These findings suggest that human fPMSCs may be a safe and reliable resource of MSCs and can be propagated under serum-free conditions with less risk of spontaneous malignancy, and warrants further validation in clinical settings.
    PLoS ONE 01/2015; 10(2):e0117068. DOI:10.1371/journal.pone.0117068 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals. Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation.
    Nucleus (Austin, Texas) 09/2014; 5(5). DOI:10.4161/nucl.36289 · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The generation of dopaminergic (DA) neurons via direct lineage reprogramming can potentially provide a novel therapeutic platform for the study and treatment of Parkinson's disease. Here, we showed that nanoscale biophysical stimulation can promote the direct lineage reprogramming of somatic fibroblasts to induced DA (iDA) neurons. Fibroblasts that were cultured on flat, microgrooved, and nanogrooved substrates responded differently to the patterned substrates in terms of cell alignment. Subsequently, the DA marker expressions, acquisition of mature DA neuronal phenotypes, and the conversion efficiency were enhanced mostly on the nanogrooved substrate. These results may be attributed to specific histone modifications and transcriptional changes associated with mesenchymal-to-epithelial transition. Taken together, these results suggest that the nanopatterned substrate can serve as an efficient stimulant for direct lineage reprogramming to iDA neurons, and its effectiveness confirms that substrate nanotopography plays a critical role in the cell fate changes during direct lineage reprogramming.
    Biomaterials 03/2015; 45. DOI:10.1016/j.biomaterials.2014.12.049 · 8.31 Impact Factor