Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography

Dept. of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
Optics Express (Impact Factor: 3.49). 04/2011; 19(8):7299-311. DOI: 10.1364/OE.19.007299
Source: PubMed


Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time.

Download full-text


Available from: Meng-Xing Tang, Oct 06, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultrasound-mediated optical tomography (UOT) is a hybrid technique that is able to combine the high penetration depth and high spatial resolution of ultrasound imaging to overcome the limits imposed by optical scattering for deep tissue optical sensing and imaging. It has been proposed as a method to detect blood concentrations, oxygenation and metabolism at depth in tissue for the detection of vascularized tumours or the presence of absorbing or scattering contrast agents. In this paper, the basic principles of the method are outlined and methods for simulating the UOT signal are described. The main detection methods are then summarized with a discussion of the advantages and disadvantages of each. The recent focus on increasing the weak UOT signal through the use of the acoustic radiation force is explained, together with a summary of our results showing sensitivity to the mechanical shear stiffness and optical absorption properties of tissue-mimicking phantoms.
    Interface focus: a theme supplement of Journal of the Royal Society interface 08/2011; 1(4):632-48. DOI:10.1098/rsfs.2011.0021 · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Near-infrared spectroscopy (NIRS) is a popular sensing technique to measure tissue oxygenation noninvasively. However, the region of interest (ROI) is often beneath a superficial layer, which affects its accuracy. By applying focused ultrasound in the ROI, acousto-optic (AO) techniques can potentially minimize the effect of physiological changes in the superficial layer. Using absorption perturbation experiments in both transmission and reflection modes, we investigated the spatial sensitivity distributions and mean penetration depths of an AO system based on a digital correlator and two popular NIRS systems based on i. intensity measurements using a single source and detector configuration, and ii. spatially resolved spectroscopy. Our results show that for both transmission and reflection modes, the peak relative sensitivities of the two NIRS systems are near to the superficial regions, whereas those of the AO technique are near to the ROIs. In the reflection mode, when the ROI is deeper than 14 mm, the AO technique has a higher absolute mean sensitivity than the two NIRS techniques. As the focused ultrasound is moved deeper into the turbid medium, the mean penetration depth increases accordingly. The focused ultrasound can shift the peak relative sensitivity of the AO measurement toward its focused region.
    Journal of Biomedical Optics 12/2011; 16(12):127005. DOI:10.1117/1.3660315 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acousto-optic (AO) is an emerging hybrid technique for measuring optical contrast in turbid media using coherent light and ultrasound (US). A turbid object is illuminated with a coherent light source leading to speckle formation in the remitted light. With the use of US, a small volume is selected,which is commonly referred to as the "tagging" volume. This volume acts as a source of modulated light, where modulation might involve phase and intensity change. The tagging volume is created by focusing ultrasound for good lateral resolution; the axial resolution is accomplished by making either the US frequency, amplitude, or phase time-dependent. Typical resolutions are in the order of 1 mm. We will concentrate on the progress in the field since 2003. Different schemes will be discussed to detect the modulated photons based on speckle detection, heterodyne detection, photorefractive crystal (PRC) assisted detection, and spectral hole burning (SHB) as well as Fabry-Perot interferometers. The SHB and Fabry-Perot interferometer techniques are insensitive to speckle decorrelation and therefore suitable for in vivo imaging. However, heterodyne and PRC methods also have potential for in vivo measurements. Besides measuring optical properties such as scattering and absorption, AO can be applied in fluorescence and elastography applications.
    Journal of Biomedical Optics 04/2012; 17(4):040901. DOI:10.1117/1.JBO.17.4.040901 · 2.86 Impact Factor
Show more