Article

Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

Dept. of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
Optics Express (Impact Factor: 3.53). 04/2011; 19(8):7299-311. DOI: 10.1364/OE.19.007299
Source: PubMed

ABSTRACT Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time.

Full-text

Available from: Meng-Xing Tang, Oct 06, 2014
0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue optical and mechanical properties are correlated to tissue pathologic changes. This manuscript describes a dual-mode ultrasound modulated optical imaging system capable of sensing local optical and mechanical properties in reflection geometry. The optical characterisation was achieved by the acoustic radiation force assisted ultrasound modulated optical tomography (ARF-UOT) with laser speckle contrast detection. Shear waves generated by the ARF were also tracked optically by the same system and the shear wave speed was used for the elasticity measurement. Tissue mimicking phantoms with multiple inclusions buried at 11 mm depth were experimentally scanned with the dual-mode system. The inclusions, with higher optical absorption and/or higher stiffness than background, were identified based on the dual results and their stiffnesses were quantified. The system characterises both optical and mechanical properties of the inclusions compared with the ARF-UOT or the elasticity measurement alone. Moreover, by detecting the backward scattered light in reflection detection geometry, the system is more suitable for clinical applications compared with transmission geometry.
    Biomedical Optics Express 01/2015; 6(1). DOI:10.1364/BOE.6.000063 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultrasound modulated optical tomography (USMOT) is an imaging technique used to provide optical functional information inside highly scattering biological tissue. One of the challenges facing this technique is the low image contrast. A contrast enhancement imaging technique based on the non-linear oscillation of microbubbles is demonstrated to improve image contrast. The ultrasound modulated signal was detected using a laser pulse based speckle contrast detection system. Better understanding of the effects of microbubbles on the optical signals was achieved through simultaneous measurement of the ultrasound scattered by the microbubbles. The length of the laser pulse was found to affect the system response of the speckle contrast method with shorter pulses suppressing the fundamental ultrasound modulated optical signal. Using this property, image contrast can be enhanced by detection of the higher harmonic ultrasound modulated optical signals due to nonlinear oscillation and destruction of the microbubbles. Experimental investigations were carried out to demonstrate a doubling in contrast by imaging a scattering phantom containing an embedded silicone tube with microbubbles flowing through it. The contrast enhancement in USMOT resulting from the use of ultrasound microbubbles has been demonstrated. Destruction of the microbubbles was shown to be the dominant effect leading to contrast improvement as shown by simultaneously detecting the ultrasound and speckle contrast signals. Line scans of a microbubble filled silicone tube embedded in a scattering phantom demonstrated experimentally the significant image contrast improvement that can be achieved using microbubbles and demonstrates the potential as a future clinical imaging tool.