Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

Biomechatronics Group, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, MA 02139, USA.
Philosophical Transactions of The Royal Society B Biological Sciences (Impact Factor: 6.31). 05/2011; 366(1570):1621-31. DOI: 10.1098/rstb.2010.0347
Source: PubMed

ABSTRACT Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.


Available from: Ken Endo, Mar 15, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The necessity for developing advanced prostheses are apparent in light of projections that the forecast for the number of people enduring amputation will double by the year 2050. The transtibial powered prosthesis that enables positive mechanical work about the ankle during the powered plantar flexion aspect of stance phase constitutes a paradigm shift in available transtibial prostheses. The objective of the review is to advocate the state of the art regarding the transtibial powered prosthesis. The historic origins of the prosthesis and motivations for amputation are clarified. The phases of gait and the compensatory mechanisms and asymmetries inherent with passive transtibial prostheses are described. The three general classes of transtibial prosthesis (passive, energy storage and return and powered prostheses) are defined. Subsystems that are integral to the powered prosthesis are explained, such as the series elastic actuator and control architecture. Gait analysis systems and their role for the test and evaluation of energy storage and return and powered prostheses are demonstrated. Future advanced concepts; such as the integration of titin into novel muscle models that account for force enhancement and force depression including their implications for cutting edge bio-inspired actuators are elucidated. The review accounts for the evolution of the prosthetic device with regards to the scope of transtibial amputation and assesses the current state-of-the-art.
    Journal of Mechanics in Medicine and Biology 02/2015; 15(01):1530001. DOI:10.1142/S021951941530001X · 0.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although great advances have been made in the design and control of lower extremity prostheses, walking on different terrains, such as ramps or stairs, and transitioning between these terrains remains a major challenge for the field. In order to generalize biomimetic behaviour of active lower-limb prostheses top-down volitional control is required but has until recently been deemed unfeasible due to the difficulties involved in acquiring an adequate electromyographic (EMG) signal. In this study, we hypothesize that a transtibial amputee can extend the functionality of a hybrid controller, designed for level ground walking, to stair ascent and descent by volitionally modulating powered plantar-flexion of the prosthesis. We here present data illustrating that the participant is able to reproduce ankle push-off behaviour of the intrinsic controller during stair ascent as well as prevent inadvertent push-off during stair descent. Our findings suggest that EMG signal from the residual limb muscles can be used to transition between level-ground walking and stair ascent/descent within a single step and significantly improve prosthesis performance during stair-ambulation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os -- not as independent devices, but as actors within an ecosystem -- is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.
    Journal of NeuroEngineering and Rehabilitation 01/2015; 12:1. DOI:10.1186/1743-0003-12-1 · 2.62 Impact Factor