Article

The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism.

Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.
Cell host & microbe (Impact Factor: 13.02). 04/2011; 9(4):263-72. DOI: 10.1016/j.chom.2011.03.010
Source: PubMed

ABSTRACT Shigella, the Gram-negative enteroinvasive bacterium that causes shigellosis, relies on its type III secretion system (TTSS) and injected effectors to modulate host cell functions. However, consequences of the interaction between Shigella and lymphocytes have not been investigated. We show that Shigella invades activated human CD4(+) T lymphocytes. Invasion requires a functional TTSS and results in inhibition of chemokine-induced T cell migration, an effect mediated by the TTSS effector IpgD, a phosphoinositide 4-phosphatase. Remarkably, IpgD injection into bystander T cells can occur in the absence of cell invasion. Upon IpgD-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)), the pool of PIP(2) at the plasma membrane is reduced, leading to dephosphorylation of the ERM proteins and their inability to relocalize at one T cell pole upon chemokine stimulus, likely affecting the formation of the polarized edge required for cell migration. These results reveal a bacterial TTSS effector-mediated strategy to impair T cell function.

0 Bookmarks
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the infectious process, bacterial pathogens are subject to changes in environmental conditions such as nutrient availability, immune response challenges, bacterial density and physical contacts with targeted host cells. These conditions occur in the colonized organs, in diverse regions within infected tissues or even at the subcellular level for intracellular pathogens. Integration of environmental cues leads to measurable biological responses in the bacterium required for adaptation. Recent progress in technology enabled the study of bacterial adaptation in situ using genetically encoded reporters that allow single cell analysis or whole body imaging based on fluorescent proteins, alternative fluorescent assays or luciferases. This review presents a historical perspective and technical details on the methods used to develop transcriptional reporters, protein-protein interaction assays and secretion detection assays to study pathogenic bacteria adaptation in situ. Finally, studies published in the last five years on gram positive and gram negative bacterial adaptation to the host during infection are discussed. However, the methods described here could easily be extended to study complex microbial communities within host tissue and in the environment.
    FEBS Letters 05/2014; · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibody-mediated immunity to Shigella, the causative agent of bacillary dysentery, requires several episodes of infection to get primed and is short-lasting, suggesting that the B cell response is functionally impaired. We show that upon ex vivo infection of human colonic tissue, invasive S. flexneri interacts with and occasionally invades B lymphocytes. The induction of a type three secretion apparatus (T3SA)-dependent B cell death is observed in the human CL-01 B cell line in vitro, as well as in mouse B lymphocytes in vivo. In addition to cell death occurring in Shigella-invaded CL-01 B lymphocytes, we provide evidence that the T3SA needle tip protein IpaD can induce cell death in noninvaded cells. IpaD binds to and induces B cell apoptosis via TLR2, a signaling receptor thus far considered to result in activation of B lymphocytes. The presence of bacterial co-signals is required to sensitize B cells to apoptosis and to up-regulate tlr2, thus enhancing IpaD binding. Apoptotic B lymphocytes in contact with Shigella-IpaD are detected in rectal biopsies of infected individuals. This study therefore adds direct B lymphocyte targeting to the diversity of mechanisms used by Shigella to dampen the host immune response.
    Journal of Experimental Medicine 05/2014; · 13.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Shigella enters epithlial cells via internalization into a vacuole. Subsequent vacuolar membrane rupture allows bacterial escape into the cytosol for replication and cell-to-cell spread. Bacterial effectors such as IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P and alters host actin, facilitate this internalization. Here, we identify host proteins involved in Shigella uptake and vacuolar membrane rupture by high-content siRNA screening and subsequently focus on Rab11, a constituent of the recycling compartment. Rab11-positive vesicles are recruited to the invasion site before vacuolar rupture, and Rab11 knockdown dramatically decreases vacuolar membrane rupture. Additionally, Rab11 recruitment is absent and vacuolar rupture is delayed in the ipgD mutant that does not dephosphorylate PI(4,5)P2 into PI(5)P. Ultrastructural analyses of Rab11-positive vesicles further reveal that ipgD mutant-containing vacuoles become confined in actin structures that likely contribute to delayed vacular rupture. These findings provide insight into the underlying molecular mechanism of vacuole progression and rupture during Shigella invasion.
    Cell host & microbe. 10/2014; 16(4):517-530.

Full-text

Download
23 Downloads
Available from
Jun 4, 2014