Fetal alcohol spectrum disorders: an overview.

Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA.
Neuropsychology Review (Impact Factor: 5.4). 06/2011; 21(2):73-80. DOI: 10.1007/s11065-011-9166-x
Source: PubMed

ABSTRACT When fetal alcohol syndrome (FAS) was initially described, diagnosis was based upon physical parameters including facial anomalies and growth retardation, with evidence of developmental delay or mental deficiency. Forty years of research has shown that FAS lies towards the extreme end of what are now termed fetal alcohol spectrum disorders (FASD). The most profound effects of prenatal alcohol exposure are on the developing brain and the cognitive and behavioral effects that ensue. Alcohol exposure affects brain development via numerous pathways at all stages from neurogenesis to myelination. For example, the same processes that give rise to the facial characteristics of FAS also cause abnormal brain development. Behaviors as diverse as executive functioning to motor control are affected. This special issue of Neuropsychology Review addresses these changes in brain and behavior highlighting the relationship between the two. A diagnostic goal is to recognize FAS as a disorder of brain rather than one of physical characteristics.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal alcohol exposure can cause a wide range of deficits in executive function that persist throughout life, but little is known about how changes in brain structure relate to cognition in affected individuals. In the current study, we predicted that the rate of white matter volumetric development would be atypical in children with fetal alcohol spectrum disorders (FASD) when compared to typically developing children, and that the rate of change in cognitive function would relate to differential white matter development between groups. Data were available for 103 subjects [49 with FASD, 54 controls, age range 6-17, mean age = 11.83] with 153 total observations. Groups were age-matched. Participants underwent structural magnetic resonance imaging (MRI) and an executive function (EF) battery. Using white matter volumes measured bilaterally for frontal and parietal regions and the corpus callosum, change was predicted by modeling the effects of age, intracranial volume, sex, and interactions with exposure status and EF measures. While both groups showed regional increases in white matter volumes and improvement in cognitive performance over time, there were significant effects of exposure status on age-related relationships between white matter increases and EF measures. Specifically, individuals with FASD consistently showed a positive relationship between improved cognitive function and increased white matter volume over time, while no such relationships were seen in controls. These novel results relating improved cognitive function with increased white matter volume in FASD suggest that better cognitive outcomes could be possible for FASD subjects through interventions that enhance white matter plasticity.
    06/2014; 5:19-27. DOI:10.1016/j.nicl.2014.05.010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells, especially human embryonic stem cells (hESCs), are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol, EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs, we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs, particularly those associated with molecular pathways for metabolic processes, oxidative stress, and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts, with methylation on the promoter regions of chromosomes 2, 16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes, which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis.
    Stem Cell Research 04/2014; 12(3):791-806. DOI:10.1016/j.scr.2014.03.009 · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol (EtOH) triggers cellular adaptations that induce tolerance in many brain areas, including the suprachiasmatic nucleus (SCN), the site of the master circadian clock. EtOH inhibits light-induced phase shifts in the SCN in vivo and glutamate-induced phase shifts in vitro. The in vitro phase shifts develop acute tolerance to EtOH, occurring within minutes of initial exposure, while the in vivo phase shifts exhibit no evidence of chronic tolerance. An intermediate form, rapid tolerance, is not well studied but may predict subsequent chronic tolerance. Here, we investigated rapid tolerance in the SCN clock. Adult C57BL/6 mice were provided 15% EtOH or water for one 12-hour lights-off period. For in vitro experiments, SCN-containing brain slices were prepared in the morning and treated for 10 minutes with glutamate +/- EtOH the following night. Single-cell neuronal firing rates were recorded extracellularly during the subsequent day to determine SCN clock phase. For in vivo experiments, mice receiving EtOH 24 hours previously were exposed to a 30-minute light pulse immediately preceded by intraperitoneal saline or 2 g/kg EtOH injection. Mice were then placed in constant darkness and their phase-shifting responses measured. In vitro, the SCN clock from EtOH-exposed mice exhibited rapid tolerance, with a 10-fold increase in EtOH needed to inhibit glutamate-induced phase shifts. Co-application of brain-derived neurotrophic factor prevented EtOH inhibition, consistent with experiments using EtOH-naïve mice. Rapid tolerance lasts 48 to 96 hours, depending on whether assessing in vitro phase advances or phase delays. Similarly, in vivo, prior EtOH consumption prevented EtOH's acute blockade of photic phase delays. Finally, immunoblot experiments showed no changes in SCN glutamate receptor subunit (NR2B) expression or phosphorylation in response to rapid tolerance induction. The SCN circadian clock develops rapid tolerance to EtOH as assessed both in vivo and in vitro, and the tolerance lasts for several days. These data demonstrate the utility of the circadian system as a model for investigating cellular mechanisms through which EtOH acts in the brain.
    Alcoholism Clinical and Experimental Research 02/2014; 38(3). DOI:10.1111/acer.12303 · 3.31 Impact Factor


Available from