Structural basis for the high-affinity inhibition of mammalian membranous adenylyl cyclase by 2',3'-o-(N-methylanthraniloyl)-inosine 5'-triphosphate.

Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany.
Molecular pharmacology (Impact Factor: 4.13). 07/2011; 80(1):87-96. DOI: 10.1124/mol.111.071894
Source: PubMed


2',3'-O-(N-Methylanthraniloyl)-ITP (MANT-ITP) is the most potent inhibitor of mammalian membranous adenylyl cyclase (mAC) 5 (AC5, K(i), 1 nM) yet discovered and surpasses the potency of MANT-GTP by 55-fold (J Pharmacol Exp Ther 329:1156-1165, 2009). AC5 inhibitors may be valuable drugs for treatment of heart failure. The aim of this study was to elucidate the structural basis for the high-affinity inhibition of mAC by MANT-ITP. MANT-ITP was a considerably more potent inhibitor of the purified catalytic domains VC1 and IIC2 of mAC than MANT-GTP (K(i), 0.7 versus 18 nM). Moreover, there was considerably more efficient fluorescence resonance energy transfer between Trp1020 of IIC2 and the MANT group of MANT-ITP compared with MANT-GTP, indicating optimal interaction of the MANT group of MANT-ITP with the hydrophobic pocket. The crystal structure of MANT-ITP in complex with the G(s)α- and forskolin-activated catalytic domains VC1:IIC2 compared with the existing MANT-GTP crystal structure revealed only subtle differences in binding mode. The higher affinity of MANT-ITP to mAC compared with MANT-GTP is probably due to fewer stereochemical constraints upon the nucleotide base in the purine binding pocket, allowing a stronger interaction with the hydrophobic regions of IIC2 domain, as assessed by fluorescence spectroscopy. Stronger interaction is also achieved in the phosphate-binding site. The triphosphate group of MANT-ITP exhibits better metal coordination than the triphosphate group of MANT-GTP, as confirmed by molecular dynamics simulations. Collectively, the subtle differences in ligand structure have profound effects on affinity for mAC.

Download full-text


Available from: Gerald Lushington,
40 Reads
  • Source
    • "and the TNP or (M)ANT group projects into a pocket adjacent to the catalytic site, conferring high affinity of the ligands for mACs and stabilizing inactive mAC conformations between the open and closed states (Mou et al., 2005, 2006; Hübner et al., 2011; Seifert et al., 2012). Hydrophobic interactions of the TNP-or (M)ANT-nucleotides were also explored to monitor conformational changes in mACs by fluorescence spectroscopy, providing major new insights into the dynamics of enzyme regulation (Mou et al., 2005, 2006; Pinto et al., 2009, 2011; Suryanarayana et al., 2009; Hübner et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Soluble guanylyl cyclase (sGC) plays an important role in cardiovascular function and catalyzes formation of cGMP. sGC is activated by nitric oxide and allosteric stimulators and activators. However, despite its therapeutic relevance, the regulatory mechanisms of sGC are still incompletely understood. A major reason for this situation is that no crystal structures of active sGC have been resolved so far. An important step towards this goal is the identification of high-affinity ligands that stabilize a sGC conformation resembling the active, "fully closed" state. Therefore, we examined inhibition of rat sGC α1β1 by 38 purine and pyrimidine nucleotides with 2,4,6,-trinitrophenyl- and (N-methyl)anthraniloyl substitutions at the ribosyl moiety and compared the data with those for the structurally related membranous ACs (mACs) 1, 2 and 5 and the purified mAC catalytic subunits VC1:IIC2. 2',3'-O-(2,4,6-Trinitrophenyl)-guanosine 5'-triphosphate (TNP-GTP) was the most potent sGC α1β1 inhibitor (Ki, 10.7 nM), followed by 2'-O-(N-methylanthraniloyl)-3'-deoxy-adenosine 5'-triphosphate (2'-MANT-3'-dATP) (Ki, 16.7 nM). Docking studies on a sGCαcat/sGCβcat model derived from the inactive heterodimeric crystal structure of the catalytic domains point to similar interactions of MANT- and TNP-nucleotides with sGC α1β1 and mAC VC1:IIC2. Reasonable binding modes of 2'-MANT-3'-dATP and bis-(M)ANT-nucleotides at sGC α1β1 require a 3'-endo ribosyl conformation (vs. 3'-exo in 3'-MANT-2'-dATP). Overall, inhibitory potencies of nucleotides at sGC α1β1 vs. mACs 1, 2 and 5 correlated poorly. Collectively, we identified highly potent sGC α1β1 inhibitors that may be useful for future crystallographic and fluorescence spectroscopy studies. Moreover, it may become possible to develop mAC inhibitors with selectivity relative to sGC.
    Molecular pharmacology 01/2014; 85(4). DOI:10.1124/mol.113.091017 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membranous adenylyl cyclases (ACs) play a key role in signal transduction and are promising drug targets. In previous studies we showed that 2',3'-(O)-(N-methylanthraniloyl) (MANT)-substituted nucleotides are potent AC inhibitors. The aim of this study was to provide systematic structure-activity relationships for 21 (M)ANT-substituted nucleotides at the purified catalytic AC subunit heterodimer VC1:IIC2, the VC1:VC1 homodimer and recombinant ACs 1, 2 and 5. (M)ANT-nucleotides inhibited fully activated VC1:IIC2 in the order of affinity for bases hypoxanthine>uracil>cytosine>adenine∼guanine≫xanthine. Omission of a hydroxyl group at the 2' or 3'-position reduced inhibitor potency as did introduction of a γ-thiophosphate group or omission of the γ-phosphate group. Substitution of the MANT-group by an ANT-group had little effect on affinity. Although all nucleotides bound to VC1:IIC2 similarly according to the tripartite pharmacophore model with a site for the base, the ribose, and the phosphate chain, nucleotides exhibited subtle differences in their binding modes as revealed by fluorescence spectroscopy and molecular modelling. MANT-nucleotides also differentially interacted with the VC1:VC1 homodimer as assessed by fluorescence spectroscopy and modelling. Similar structure-activity relationships as for VC1:IIC2 were obtained for recombinant ACs 1, 2 and 5, with AC2 being the least sensitive AC isoform in terms of inhibition. Overall, ACs possess a broad base-specificity with no preference for the "cognate" base adenine as verified by enzyme inhibition, fluorescence spectroscopy and molecular modelling. These properties of ACs are indicative for ligand-specific conformational landscapes that extend to the VC1:VC1 homodimer and should facilitate development of non-nucleotide inhibitors.
    Biochemical pharmacology 05/2011; 82(4):358-70. DOI:10.1016/j.bcp.2011.05.010 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). Conventional antibiotic treatment is ineffective against either toxaemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Our previous studies showed that EF is differentially inhibited by various purine and pyrimidine nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl (ANT) groups at the 2'(3')-O-ribosyl position, with the unique preference for the base cytosine (Taha et al., Mol Pharmacol 75:693 (2009)). MANT-CTP was the most potent EF inhibitor (K (i), 100 nM) among 16 compounds studied. Here, we examined the interaction of EF with a series of 18 2',3'-O-mono- and bis-(M)ANT-substituted nucleotides, recently shown to be very potent inhibitors of the AC toxin from Bordetella pertussis, CyaA (Geduhn et al., J Pharmacol Exp Ther 336:104 (2011)). We analysed purified EF and EF mutants in radiometric AC assays and in fluorescence spectroscopy studies and conducted molecular modelling studies. Bis-MANT nucleotides inhibited EF competitively. Propyl-ANT-ATP was the most potent EF inhibitor (K (i), 80 nM). In contrast to the observations made for CyaA, introduction of a second (M)ANT-group decreased rather than increased inhibitor potency at EF. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to bis-MANT-ATP, but FRET to bis-MANT-CTP was only small. Mutations N583Q, K353A and K353R differentially altered the inhibitory potencies of bis-MANT-ATP and bis-MANT-CTP. The nucleotide binding site of EF accommodates bulky bis-(M)ANT-substituted purine and pyrimidine nucleotides, but the fit is suboptimal compared to CyaA. These data provide a basis for future studies aiming at the development of potent EF inhibitors with high selectivity relative to mammalian ACs.
    Archiv für Experimentelle Pathologie und Pharmakologie 09/2011; 385(1):57-68. DOI:10.1007/s00210-011-0688-9 · 2.47 Impact Factor
Show more