Aldehyde Dehydrogenase in Combination with CD133 Defines Angiogenic Ovarian Cancer Stem Cells That Portend Poor Patient Survival

Division of Hematology Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA.
Cancer Research (Impact Factor: 9.33). 06/2011; 71(11):3991-4001. DOI: 10.1158/0008-5472.CAN-10-3175
Source: PubMed


Markers that reliably identify cancer stem cells (CSC) in ovarian cancer could assist prognosis and improve strategies for therapy. CD133 is a reported marker of ovarian CSC. Aldehyde dehydrogenase (ALDH) activity is a reported CSC marker in several solid tumors, but it has not been studied in ovarian CSC. Here we report that dual positivity of CD133 and ALDH defines a compelling marker set in ovarian CSC. All human ovarian tumors and cell lines displayed ALDH activity. ALDH(+) cells isolated from ovarian cancer cell lines were chemoresistant and preferentially grew tumors, compared with ALDH(-) cells, validating ALDH as a marker of ovarian CSC in cell lines. Notably, as few as 1,000 ALDH(+) cells isolated directly from CD133(-) human ovarian tumors were sufficient to generate tumors in immunocompromised mice, whereas 50,000 ALDH(-) cells were unable to initiate tumors. Using ALDH in combination with CD133 to analyze ovarian cancer cell lines, we observed even greater growth in the ALDH(+)CD133(+) cells compared with ALDH(+)CD133(-) cells, suggesting a further enrichment of ovarian CSC in ALDH(+)CD133(+) cells. Strikingly, as few as 11 ALDH(+)CD133(+) cells isolated directly from human tumors were sufficient to initiate tumors in mice. Like other CSC, ovarian CSC exhibited increased angiogenic capacity compared with bulk tumor cells. Finally, the presence of ALDH(+)CD133(+) cells in debulked primary tumor specimens correlated with reduced disease-free and overall survival in ovarian cancer patients. Taken together, our findings define ALDH and CD133 as a functionally significant set of markers to identify ovarian CSCs.

Download full-text


Available from: Dafydd G Thomas, Feb 10, 2014
  • Source
    • "Several potential ovarian CSCs specific surface markers have been described such as CD44+/CD117+ [33], CD44+/MyD88+ [34], CD133+ [35], CD44+/CD24− [21], [36] and ALDH/CD133+ [37]. Detecting ALDH1A1 via the ALDEFLUOR assay is a simple and effective approach for identifying and isolating ovarian CSCs from cell lines and primary tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. Methods Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. Results ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. Conclusion This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.
    PLoS ONE 09/2014; 9(9):e107142. DOI:10.1371/journal.pone.0107142 · 3.23 Impact Factor
  • Source
    • "To date, the most commonly used markers for ovarian CSCs are CD133 and ALDH. ALDH (+) cells are inherently resistant to chemotherapy [34]. Small numbers of ALDH (+) cells can initiate tumors in mice, whereas a 10- to 50-fold excess of ALDH (−) cells cannot. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.
    BioMed Research International 06/2014; 2014:132702. DOI:10.1155/2014/132702 · 1.58 Impact Factor
  • Source
    • "Neoplasia Vol. 16, No. 4, 2014 VEGFR3 Regulates BRCA1 and BRCA2 Expression Lim et al. 347 CD133 + [35] [39] "
    [Show abstract] [Hide abstract]
    ABSTRACT: In ovarian cancer, loss of BRCA gene expression in tumors is associated with improved response to chemotherapy and increased survival. A means to pharmacologically downregulate BRCA gene expression could improve the outcomes of patients with BRCA wild-type tumors. We report that vascular endothelial growth factor receptor 3 (VEGFR3) inhibition in ovarian cancer cells is associated with decreased levels of both BRCA1 and BRCA2. Inhibition of VEGFR3 in ovarian tumor cells was associated with growth arrest. CD133(+) ovarian cancer stemlike cells were preferentially susceptible to VEGFR3-mediated growth inhibition. VEGFR3 inhibition-mediated down-regulation of BRCA gene expression reversed chemotherapy resistance and restored chemosensitivity in resistant cell lines in which a BRCA2 mutation had reverted to wild type. Finally, we demonstrate that tumor-associated macrophages are a primary source of VEGF-C in the tumor microenvironment. Our studies suggest that VEGFR3 inhibition may be a pharmacologic means to downregulate BRCA genes and improve the outcomes of patients with BRCA wild-type tumors.
    Neoplasia (New York, N.Y.) 04/2014; 16(4):343-353.e2. DOI:10.1016/j.neo.2014.04.003 · 4.25 Impact Factor
Show more