BACOM: In Silico Detection of Genomic Deletion Types and Correction of Normal Cell Contamination in Copy Number Data

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
Bioinformatics (Impact Factor: 4.98). 06/2011; 27(11):1473-80. DOI: 10.1093/bioinformatics/btr183
Source: PubMed


Identification of somatic DNA copy number alterations (CNAs) and significant consensus events (SCEs) in cancer genomes is a main task in discovering potential cancer-driving genes such as oncogenes and tumor suppressors. The recent development of SNP array technology has facilitated studies on copy number changes at a genome-wide scale with high resolution. However, existing copy number analysis methods are oblivious to normal cell contamination and cannot distinguish between contributions of cancerous and normal cells to the measured copy number signals. This contamination could significantly confound downstream analysis of CNAs and affect the power to detect SCEs in clinical samples.
We report here a statistically principled in silico approach, Bayesian Analysis of COpy number Mixtures (BACOM), to accurately estimate genomic deletion type and normal tissue contamination, and accordingly recover the true copy number profile in cancer cells. We tested the proposed method on two simulated datasets, two prostate cancer datasets and The Cancer Genome Atlas high-grade ovarian dataset, and obtained very promising results supported by the ground truth and biological plausibility. Moreover, based on a large number of comparative simulation studies, the proposed method gives significantly improved power to detect SCEs after in silico correction of normal tissue contamination. We develop a cross-platform open-source Java application that implements the whole pipeline of copy number analysis of heterogeneous cancer tissues including relevant processing steps. We also provide an R interface, bacomR, for running BACOM within the R environment, making it straightforward to include in existing data pipelines.
The cross-platform, stand-alone Java application, BACOM, the R interface, bacomR, all source code and the simulation data used in this article are freely available at authors' web site:

1 Follower
55 Reads
  • Source
    • "highly comparable results with the estimates by BACOM 2.0 and ABSOLUTE based on somatic copy number data (Carter et al., 2012; Yu et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a novel unsupervised deconvolution method, within a well-grounded mathematical framework, to dissect mixed gene expressions in heterogeneous tumor samples. We implement an R package, UNsupervised DecOnvolution (UNDO), that can be used to automatically detect cell-specific marker genes (MGs) located on the scatter radii of mixed gene expressions, estimate cellular proportions in each sample and deconvolute mixed expressions into cell-specific expression profiles. We demonstrate the performance of UNDO over a wide range of tumor-stroma mixing proportions, validate UNDO on various biologically mixed benchmark gene expression datasets and further estimate tumor purity in TCGA/CPTAC datasets. The highly accurate deconvolution results obtained suggest not only the existence of cell-specific MGs but also UNDO's ability to detect them blindly and correctly. Although the principal application here involves microarray gene expressions, our methodology can be readily applied to other types of quantitative molecular profiling data. Availability and implementation: UNDO is available at
    Bioinformatics 09/2014; 31(1). DOI:10.1093/bioinformatics/btu607 · 4.98 Impact Factor
  • Source
    • "Practically, lower thresholds were used to define broad (arm-level) CNAs while higher thresholds were used to define focal CNAs [3,14]. A newly proposed strategy is to apply joint magnitude-length thresholds [14] and to correct normal cell contamination using BACOM [18]. Since our main objective here is to identify focal CNAs, we have largely adopted the same strategy used in [3,14], i.e., we used relatively higher thresholds to define focal CNAs for subsequent analyses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is implemented using C++, together with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use. The source code and documentation are freely available at
    BMC Genomics 07/2012; 13(1):342. DOI:10.1186/1471-2164-13-342 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background RNA-seq, a next-generation sequencing based method for transcriptome analysis, is rapidly emerging as the method of choice for comprehensive transcript abundance estimation. The accuracy of RNA-seq can be highly impacted by the purity of samples. A prominent, outstanding problem in RNA-seq is how to estimate transcript abundances in heterogeneous tissues, where a sample is composed of more than one cell type and the inhomogeneity can substantially confound the transcript abundance estimation of each individual cell type. Although experimental methods have been proposed to dissect multiple distinct cell types, computationally "deconvoluting" heterogeneous tissues provides an attractive alternative, since it keeps the tissue sample as well as the subsequent molecular content yield intact. Results Here we propose a probabilistic model-based approach, Transcript Estimation from Mixed Tissue samples (TEMT), to estimate the transcript abundances of each cell type of interest from RNA-seq data of heterogeneous tissue samples. TEMT incorporates positional and sequence-specific biases, and its online EM algorithm only requires a runtime proportional to the data size and a small constant memory. We test the proposed method on both simulation data and recently released ENCODE data, and show that TEMT significantly outperforms current state-of-the-art methods that do not take tissue heterogeneity into account. Currently, TEMT only resolves the tissue heterogeneity resulting from two cell types, but it can be extended to handle tissue heterogeneity resulting from multi cell types. TEMT is written in python, and is freely available at Conclusions The probabilistic model-based approach proposed here provides a new method for analyzing RNA-seq data from heterogeneous tissue samples. By applying the method to both simulation data and ENCODE data, we show that explicitly accounting for tissue heterogeneity can significantly improve the accuracy of transcript abundance estimation.
    BMC Bioinformatics 04/2013; 14(5). DOI:10.1186/1471-2105-14-S5-S11 · 2.58 Impact Factor
Show more

Similar Publications


55 Reads
Available from