Article

Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: efficacy and underlying mechanisms

Department of Neurology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0106, USA.
Cancer letters (Impact Factor: 5.02). 07/2011; 306(2):223-9. DOI: 10.1016/j.canlet.2011.03.010
Source: PubMed

ABSTRACT Histone deacetylase (HDAC) inhibitors can radiosensitize cancer cells. Radiation is critical in high-risk neuroblastoma treatment, and combinations of HDAC inhibitor vorinostat and radiation are proposed for neuroblastoma trials. Therefore, we investigated radiosensitizing effects of vorinostat in neuroblastoma. Treatment of neuroblastoma cell lines decreased cell viability and resulted in additive effects with radiation. In a murine metastatic neuroblastoma in vivo model vorinostat and radiation combinations decreased tumor volumes compared to single modality. DNA repair enzyme Ku-86 was reduced in several neuroblastoma cells treated with vorinostat. Thus, vorinostat potentiates anti-neoplastic effects of radiation in neuroblastoma possibly due to down-regulation of DNA repair enzyme Ku-86.

0 Followers
 · 
180 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.
    Clinical Epigenetics 10/2011; 3(1):4. DOI:10.1186/1868-7083-3-4 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma is a heterogeneous disease; tumors can spontaneously regress or mature, or display an aggressive, therapy-resistant phenotype. Increasing evidence indicates that the biological and molecular features of neuroblastoma significantly influence and are highly predictive of clinical behavior. Because of this, neuroblastoma has served as a paradigm for biological risk assessment and treatment assignment. Most current clinical studies of neuroblastoma base therapy and its intensity on a risk stratification that takes into account both clinical and biological variables predictive of relapse. For example, surgery alone offers definitive therapy with excellent outcome for patients with low-risk disease, whereas patients at high risk for disease relapse are treated with intensive multimodality therapy. In this review recent advances in the understanding of the molecular genetic events involved in neuroblastoma pathogenesis are discussed, and how they are impacting the current risk stratification and providing potential targets for new therapeutic approaches for children with neuroblastoma. In addition, the results of significant recent clinical trials for the treatment of neuroblastoma are reviewed.
    Seminars in Pediatric Surgery 02/2012; 21(1):2-14. DOI:10.1053/j.sempedsurg.2011.10.009 · 1.94 Impact Factor
  • Source
    Neuroblastoma - Present and Future, 02/2012; , ISBN: 978-953-307-016-2
Show more

Preview

Download
0 Downloads
Available from