Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: Efficacy and underlying mechanisms

Department of Neurology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0106, USA.
Cancer letters (Impact Factor: 5.62). 07/2011; 306(2):223-9. DOI: 10.1016/j.canlet.2011.03.010
Source: PubMed

ABSTRACT Histone deacetylase (HDAC) inhibitors can radiosensitize cancer cells. Radiation is critical in high-risk neuroblastoma treatment, and combinations of HDAC inhibitor vorinostat and radiation are proposed for neuroblastoma trials. Therefore, we investigated radiosensitizing effects of vorinostat in neuroblastoma. Treatment of neuroblastoma cell lines decreased cell viability and resulted in additive effects with radiation. In a murine metastatic neuroblastoma in vivo model vorinostat and radiation combinations decreased tumor volumes compared to single modality. DNA repair enzyme Ku-86 was reduced in several neuroblastoma cells treated with vorinostat. Thus, vorinostat potentiates anti-neoplastic effects of radiation in neuroblastoma possibly due to down-regulation of DNA repair enzyme Ku-86.

1 Follower
18 Reads
  • Source
    • "We next confirmed the validity of our findings using two additional cell lines, SH-SY5Y and Kelly NB cells (3A and B, respectively). These cell lines differ in MYCN status (Kelly: amplified, SH-SY5Y: non-amplified; [18]) and 11q deletion (Kelly: deleted, SH-SY5Y: not deleted; [19]), also SH-SY5Y NB cells are 1q trisomic [20], while this particular chromosomal abnormality is not found in Kelly NB cells [21]. Thus, these two cell lines can be viewed as representing different extremes on the spectrum of malignant NB [22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Breaking resistance to chemotherapy is a major goal of combination therapy in many tumors, including advanced neuroblastoma. We recently demonstrated that increased activity of the PI3K/Akt network is associated with poor prognosis, thus providing an ideal target for chemosensitization. Here we show that targeted therapy using the PI3K/mTOR inhibitor NVP-BEZ235 significantly enhances doxorubicin-induced apoptosis in neuroblastoma cells. Importantly, this increase in apoptosis was dependent on scheduling: while pretreatment with the inhibitor reduced doxorubicin-induced apoptosis, the sensitizing effect in co-treatment could further be increased by delayed addition of the inhibitor post chemotherapy. Desensitization for doxorubicin-induced apoptosis seemed to be mediated by a combination of cell cycle-arrest and autophagy induction, whereas sensitization was found to occur at the level of mitochondria within one hour of NVP-BEZ235 posttreatment, leading to a rapid loss of mitochondrial membrane potential with subsequent cytochrome c release and caspase-3 activation. Within the relevant time span we observed marked alterations in a ∼30 kDa protein associated with mitochondrial proteins and identified it as VDAC1/Porin protein, an integral part of the mitochondrial permeability transition pore complex. VDAC1 is negatively regulated by the PI3K/Akt pathway via GSK3β and inhibition of GSK3β, which is activated when Akt is blocked, ablated the sensitizing effect of NVP-BEZ235 posttreatment. Our findings show that cancer cells can be sensitized for chemotherapy induced cell death - at least in part - by NVP-BEZ235-mediated modulation of VDAC1. More generally, we show data that suggest that sequential dosing, in particular when multiple inhibitors of a single pathway are used in the optimal sequence, has important implications for the general design of combination therapies involving molecular targeted approaches towards the PI3K/Akt/mTOR signaling network.
    PLoS ONE 12/2013; 8(12):e83128. DOI:10.1371/journal.pone.0083128 · 3.23 Impact Factor
  • Source
    • "A recent report showed that the HDAC inhibitor sodium butyrate sensitizes E1A-Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of so-called gH2AX foci which are markers of DSBs (Eot-Houllier et al., 2009). Several other studies emphasize the occurrence and prolonged duration of phosphorylated histone H2AX (gH2AX) nuclear foci after treatment with HDAC inhibitors and DNA damage causing agents (Eot-Houllier et al., 2009; Mueller et al., 2011; Zhang et al., 2009a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal epigenetic control is a common early event in tumour progression, and aberrant acetylation in particular has been implicated in tumourigenesis. One of the most promising approaches towards drugs that modulate epigenetic processes has been seen in the development of inhibitors of histone deacetylases (HDACs). HDACs regulate the acetylation of histones in nucleosomes, which mediates changes in chromatin conformation, leading to regulation of gene expression. HDACs also regulate the acetylation status of a variety of other non-histone substrates, including key tumour suppressor proteins and oncogenes. Histone deacetylase inhibitors (HDIs) are potent anti-proliferative agents which modulate acetylation by targeting histone deacetylases. Interest is increasing in HDI-based therapies and so far, two HDIs, vorinostat (SAHA) and romidepsin (FK228), have been approved for treating cutaneous T-cell lymphoma (CTCL). Others are undergoing clinical trials. Treatment with HDIs prompts tumour cells to undergo apoptosis, and cell-based studies have shown a number of other outcomes to result from HDI treatment, including cell-cycle arrest, cell differentiation, anti-angiogenesis and autophagy. However, our understanding of the key pathways through which HDAC inhibitors affect tumour cell growth remains incomplete, which has hampered progress in identifying malignancies other than CTCL which are likely to respond to HDI treatment.
    Molecular oncology 10/2012; 6(6). DOI:10.1016/j.molonc.2012.09.003 · 5.33 Impact Factor
  • Source
    • "As we decided to change all three parameters we can only guess which change has the highest impact and it remains unclear, if fractionation is obligatory or not. In previous reports on xenograft studies concerning breast tumors, neuroblastoma and ovarian cancer combination of HDACIs with fractionated [7,17] as well as single-dose irradiation [19] have been reported to be successful. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase inhibitors are promising new substances in cancer therapy and have also been shown to sensitize different tumor cells to irradiation (XRT). We explored the effect as well as the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) in vivo in a malignant rhabdoid tumor (MRT) mouse model. Potential radiosensitization by SAHA was assessed in MRT xenografts by analysis of tumor growth delay, necrosis (HE), apoptosis (TUNEL), proliferation (ki-67) and γH2AX expression as well as dynamic 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG -PET) after treatment with either SAHA alone, single-dose (10 Gy) or fractionated XRT (3 × 3Gy) solely as well as in combination with SAHA compared to controls. SAHA only had no significant effect on tumor growth. Combination of SAHA for 8 days with single-dose XRT resulted in a higher number of complete remissions, but failed to prove a significant growth delay compared to XRT only. In contrast fractionated XRT plus SAHA for 3 weeks did induce significant tumor growth delay in MRT-xenografts. The histological examination showed a significant effect of XRT in tumor necrosis, expression of Ki-67, γH2AX and apoptosis. SAHA only had no significant effect in the histological examination. Comparison of xenografts treated with XRT and XRT plus SAHA revealed a significantly increased γH2AX expression and apoptosis induction in the mice tumors after combination treatment with single-dose as well as fractionated XRT. The combination of SAHA with XRT showed a tendency to increased necrosis and decrease of proliferation compared to XRT only, which, however, was not significant. The 18F-FDG-PET results showed no significant differences in the standard uptake value or glucose transport kinetics after either treatment. SAHA did not have a significant effect alone, but proved to enhance the effect of XRT in our MRT in vivo model.
    Radiation Oncology 03/2012; 7(1):52. DOI:10.1186/1748-717X-7-52 · 2.55 Impact Factor
Show more


18 Reads
Available from