Article

A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity.

Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
Developmental Cell (Impact Factor: 10.37). 04/2011; 20(4):497-510. DOI: 10.1016/j.devcel.2011.03.010
Source: PubMed

ABSTRACT Many molecular pathways involved in heart disease have their roots in evolutionarily ancient developmental programs that depend critically on gene dosage and timing. MicroRNAs (miRNAs) modulate gene dosage posttranscriptionally, and among these, the muscle-specific miR-1 is particularly important for developing and maintaining somatic/skeletal and cardiac muscle. To identify pathways regulated by miR-1, we performed a forward genetic screen in Drosophila using wing-vein patterning as a biological assay. We identified several unexpected genes that genetically interacted with dmiR-1, one of which was kayak, encodes a developmentally regulated transcription factor. Additional studies directed at this genetic relationship revealed a previously unappreciated function of dmiR-1 in regulating the polarity of cardiac progenitor cells. The mammalian ortholog of kayak, c-Fos, was dysregulated in hearts of gain- or loss-of-function miR-1 mutant mice in a stress-dependent manner. These findings illustrate the power of Drosophila-based screens to find points of intersection between miRNAs and conserved pathways in mammals.

0 Followers
 · 
168 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) are a class of small non-coding RNA molecules consisting of 19-22 nucleotides that play an important role in a variety of biological processes, including development, differentiation, apoptosis, cell proliferation and cellular senescence. A growing body of evidence suggests that miRNAs are aberrantly expressed in human cardiac diseases and they play a significant role in the initiation and development. Recently, studies revealed that microRNA-1 (miR-1) was frequently downregulated in various types of cardiac diseases. Here we review recent findings on the aberrant expression and functional significance of miR-1.
    Molecular BioSystems 09/2014; 10(11). DOI:10.1039/c4mb00338a · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest MicroRNAs are tiny RNAs that do not encode proteins. Instead, they regulate the expression of genes by preventing protein-encoding messenger RNAs from being translated into protein. MicroRNAs are expressed throughout the body, including the heart, where the most abundant microRNA is called miR-1. This is encoded by two nearly identical genes: miR-1-1 and miR-1-2. Mice that lack the miR-1-2 gene have various heart abnormalities, but generally survive because they still produce some miR-1 from their remaining miR-1-1 gene. Now, Heidersbach et al. have generated the first mice that specifically lack both miR-1 genes, and shown that these animals die before weaning. When viewed under the electron microscope, heart muscle from miR-1 double knockout mice lacks the characteristic ‘striped’, or striated, appearance of normal heart muscle. Additionally, miR-1 double knockout hearts have some gene expression characteristics more similar to the smooth muscle found in the gut and in the walls of blood vessels. Smooth muscle differs from striated muscle in that it lacks sarcomeres: these are bands of fibrous proteins, such as myosin, that are essential for muscle contraction. In normal mice, an enzyme called MLCK contributes to the formation and function of sarcomeres by adding phosphate groups to myosin molecules. By contrast, in smooth muscle an enzyme called Telokin promotes phosphate group removal, and thus affects the function of sarcomeres. Heidersbach et al. showed that miR-1 interacts directly with Telokin mRNA to prevent its expression in the heart, and simultaneously represses a protein called Myocardin, which directly activates transcription of Telokin. However, when miR-1 is absent, as in the miR-1 double knockout mice, Telokin is expressed in heart muscle, along with many other genes characteristic of smooth muscle. As well as improving our understanding of the development and functioning of the heart, these findings should shed new light on the role of microRNAs in maintaining the patterns of gene expression that characterize unique cell fates. DOI: http://dx.doi.org/10.7554/eLife.01323.002
    eLife Sciences 11/2013; 2. DOI:10.7554/eLife.01323 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: microRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-Induced Silencing Complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, while miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity.
    Journal of Biological Chemistry 04/2014; 289(20). DOI:10.1074/jbc.M114.561902 · 4.60 Impact Factor

Full-text (2 Sources)

Download
80 Downloads
Available from
May 28, 2014