Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects

Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA.
NeuroImage (Impact Factor: 6.13). 06/2011; 56(4):1875-91. DOI: 10.1016/j.neuroimage.2011.03.077
Source: PubMed

ABSTRACT Imaging traits provide a powerful and biologically relevant substrate to examine the influence of genetics on the brain. Interest in genome-wide, brain-wide search for influential genetic variants is growing, but has mainly focused on univariate, SNP-based association tests. Moving to gene-based multivariate statistics, we can test the combined effect of multiple genetic variants in a single test statistic. Multivariate models can reduce the number of statistical tests in gene-wide or genome-wide scans and may discover gene effects undetectable with SNP-based methods. Here we present a gene-based method for associating the joint effect of single nucleotide polymorphisms (SNPs) in 18,044 genes across 31,662 voxels of the whole brain in 731 elderly subjects (mean age: 75.56±6.82SD years; 430 males) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Structural MRI scans were analyzed using tensor-based morphometry (TBM) to compute 3D maps of regional brain volume differences compared to an average template image based on healthy elderly subjects. Using the voxel-level volume difference values as the phenotype, we selected the most significantly associated gene (out of 18,044) at each voxel across the brain. No genes identified were significant after correction for multiple comparisons, but several known candidates were re-identified, as were other genes highly relevant to brain function. GAB2, which has been previously associated with late-onset AD, was identified as the top gene in this study, suggesting the validity of the approach. This multivariate, gene-based voxelwise association study offers a novel framework to detect genetic influences on the brain.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis.
    Journal of Neuroscience Methods 11/2014; 237. DOI:10.1016/j.jneumeth.2014.09.001 · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imaging genetics is an emerging field aimed at identifying and characterizing genetic variants that influence measures derived from anatomical or functional brain images, which are in turn related to brain-related illnesses or fundamental cognitive, emotional and behavioral processes, and are affected by environmental factors. Here we review the recent evolution of statistical approaches and outstanding challenges in imaging genetics, with a focus on population-based imaging genetic association studies. We show the trend in imaging genetics from candidate approaches to pure discovery science, and from univariate to multivariate analyses. We also discuss future directions and prospects of imaging genetics for ultimately helping understand the genetic and environmental underpinnings of various neuropsychiatric disorders and turning basic science into clinical strategies.
    12/2014; 1(4):227-245. DOI:10.1007/s40484-013-0023-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article investigates subjects aged 55 to 65 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to broaden our understanding of early-onset (EO) cognitive impairment using neuroimaging and genetics biomarkers. Nine of the subjects had EO-AD (Alzheimer's disease) and 27 had EO-MCI (mild cognitive impairment). The 15 most important neuroimaging markers were extracted with the Global Shape Analysis (GSA) Pipeline workflow. The 20 most significant single nucleotide polymorphisms (SNPs) were chosen and were associated with specific neuroimaging biomarkers. We identified associations between the neuroimaging phenotypes and genotypes for a total of 36 subjects. Our results for all the subjects taken together showed the most significant associations between rs7718456 and L_hippocampus (volume), and between rs7718456 and R_hippocampus (volume). For the 27 MCI subjects, we found the most significant associations between rs6446443 and R_superior_frontal_gyrus (volume), and between rs17029131 and L_Precuneus (volume). For the nine AD subjects, we found the most significant associations between rs16964473 and L_rectus gyrus (surface area), and between rs12972537 and L_rectus_gyrus (surface area). We observed significant correlations between the SNPs and the neuroimaging phenotypes in the 36 EO subjects in terms of neuroimaging genetics. However, larger sample sizes are needed to ensure that the effects will be detectable for a reasonable false-positive error rate using the GSA and Plink Pipeline workflows.
    Psychiatry investigation 01/2015; 12(1):125-35. DOI:10.4306/pi.2015.12.1.125 · 1.15 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014