Article

Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects

Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA.
NeuroImage (Impact Factor: 6.13). 06/2011; 56(4):1875-91. DOI: 10.1016/j.neuroimage.2011.03.077
Source: PubMed

ABSTRACT Imaging traits provide a powerful and biologically relevant substrate to examine the influence of genetics on the brain. Interest in genome-wide, brain-wide search for influential genetic variants is growing, but has mainly focused on univariate, SNP-based association tests. Moving to gene-based multivariate statistics, we can test the combined effect of multiple genetic variants in a single test statistic. Multivariate models can reduce the number of statistical tests in gene-wide or genome-wide scans and may discover gene effects undetectable with SNP-based methods. Here we present a gene-based method for associating the joint effect of single nucleotide polymorphisms (SNPs) in 18,044 genes across 31,662 voxels of the whole brain in 731 elderly subjects (mean age: 75.56±6.82SD years; 430 males) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Structural MRI scans were analyzed using tensor-based morphometry (TBM) to compute 3D maps of regional brain volume differences compared to an average template image based on healthy elderly subjects. Using the voxel-level volume difference values as the phenotype, we selected the most significantly associated gene (out of 18,044) at each voxel across the brain. No genes identified were significant after correction for multiple comparisons, but several known candidates were re-identified, as were other genes highly relevant to brain function. GAB2, which has been previously associated with late-onset AD, was identified as the top gene in this study, suggesting the validity of the approach. This multivariate, gene-based voxelwise association study offers a novel framework to detect genetic influences on the brain.

Download full-text

Full-text

Available from: Andrew J Saykin, Jun 17, 2015
0 Followers
 · 
187 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More and more large-scale imaging genetic studies are being widely conducted to collect a rich set of imaging, genetic, and clinical data to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. Several major big-data challenges arise from testing genome-wide (NC>12 million known variants) associations with signals at millions of locations (NV~10(6)) in the brain from thousands of subjects (n~10(3)). The aim of this paper is to develop a Fast Voxelwise Genome Wide Association analysiS (FVGWAS) framework to efficiently carry out whole-genome analyses of whole-brain data. FVGWAS consists of three components including a heteroscedastic linear model, a global sure independence screening (GSIS) procedure, and a detection procedure based on wild bootstrap methods. Specifically, for standard linear association, the computational complexity is O(nNVNC) for voxelwise genome wide association analysis (VGWAS) method compared with O((NC+NV)n(2)) for FVGWAS. Simulation studies show that FVGWAS is an efficient method of searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. Finally, we have successfully applied FVGWAS to a large-scale imaging genetic data analysis of ADNI data with 708 subjects, 193,275voxels in RAVENS maps, and 501,584 SNPs, and the total processing time was 203,645seconds for a single CPU. Our FVGWAS may be a valuable statistical toolbox for large-scale imaging genetic analysis as the field is rapidly advancing with ultra-high-resolution imaging and whole-genome sequencing. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 05/2015; DOI:10.1016/j.neuroimage.2015.05.043 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this paper is to develop a functional-mixed effects modeling (FMEM) framework for the joint analysis of high-dimensional imaging data in a large number of locations (called voxels) of a three-dimensional volume with a set of genetic markers and clinical covariates. Our FMEM is extremely useful for efficiently carrying out the candidate gene approaches in imaging genetic studies. FMEM consists of two novel components including a mixed effects model for modeling nonlinear genetic effects on imaging phenotypes by introducing the genetic random effects at each voxel and a jumping surface model for modeling the variance components of the genetic random effects and fixed effects as piecewise smooth functions of the voxels. Moreover, FMEM naturally accommodates the correlation structure of the genetic markers at each voxel, while the jumping surface model explicitly incorporates the intrinsically spatial smoothness of the imaging data. We propose a novel two-stage adaptive smoothing procedure to spatially estimate the piecewise smooth functions, particularly the irregular functional genetic variance components, while preserving their edges among different piecewise-smooth regions. We develop weighted likelihood ratio tests and derive their exact approximations to test the effect of the genetic markers across voxels. Simulation studies show that FMEM significantly outperforms voxel-wise approaches in terms of higher sensitivity and specificity to identify regions of interest for carrying out candidate genetic mapping in imaging genetic studies. Finally, FMEM is used to identify brain regions affected by three candidate genes including CR1, CD2AP, and PICALM, thereby hoping to shed light on the pathological interactions between these candidate genes and brain structure and function.
    Genetic Epidemiology 12/2014; 38(8). DOI:10.1002/gepi.21854 · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain connectivity is progressively disrupted in Alzheimer's disease (AD). Here, we used a seemingly unrelated regression (SUR) model to enhance the power to identify structural connections related to cognitive scores. We simultaneously solved regression equations with different predictors and used correlated errors among the equations to boost power for associations with brain networks. Connectivity maps were computed to represent the brain's fiber networks from diffusion-weighted magnetic resonance imaging scans of 200 subjects from the Alzheimer's Disease Neuroimaging Initiative. We first identified a pattern of brain connections related to clinical decline using standard regressions powered by this large sample size. As AD studies with a large number of diffusion tensor imaging scans are rare, it is important to detect effects in smaller samples using simultaneous regression modeling like SUR. Diagnosis of mild cognitive impairment or AD is well known to be associated with ApoE genotype and educational level. In a subsample with no apparent associations using the general linear model, power was boosted with our SUR model-combining genotype, educational level, and clinical diagnosis.
    Neurobiology of Aging 08/2014; 36. DOI:10.1016/j.neurobiolaging.2014.02.032 · 4.85 Impact Factor