Article

Sensing of viral nucleic acids by RIG-I: From translocation to translation

Division of Clinical Pharmacology, Ludwig-Maximilian University Munich, Munich, Germany.
European journal of cell biology (Impact Factor: 3.7). 04/2011; 91(1):78-85. DOI: 10.1016/j.ejcb.2011.01.015
Source: PubMed

ABSTRACT The innate immune system is a first layer of defense against infection by pathogens. It responds to pathogens by activating host defense mechanisms via interferon and inflammatory cytokine expression. Pathogen associated molecular patterns (PAMPs) are sensed by specific pattern recognition receptors. Among those, the ATP dependent helicase related RIG-I like receptors RIG-I, MDA5 and LGP2 sense the presence of viral RNA in the cytoplasm of host cells. While the precise PAMPs and functions of MDA5 or LGP2 are still unclear, RIG-I senses predominantly viral RNA containing a 5'-triphosphate along with dsRNA regions. Here we review our current knowledge of how these PAMPs are sensed and integrated by RIG-I, and how RIG-I's innate immune function can be used in translational medical approaches.

Download full-text

Full-text

Available from: Karl-Peter Hopfner, Feb 21, 2014
1 Follower
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian genome has evolved to encode a battery of mechanisms, to mitigate a progression in the life cycle of an invasive viral pathogen. Although apparently disadvantaged by their dependence on the host biosynthetic processes, an immensely faster rate of evolution provides viruses with an edge in this conflict. In this review, I have discussed the potential anti-virus activity of inositol-requiring enzyme 1 (IRE1), a well characterized effector of the cellular homeostatic response to an overloading of the endoplasmic reticulum (ER) protein-folding capacity. IRE1, an ER-membrane-resident ribonuclease (RNase), upon activation catalyses regulated cleavage of select protein-coding and non-coding host RNAs, using an RNase domain which is homologous to that of the known anti-viral effector RNaseL. The latter operates as part of the Oligoadenylate synthetase OAS/RNaseL system of anti-viral defense mechanism. Protein-coding RNA substrates are differentially treated by the IRE1 RNase to either augment, through cytoplasmic splicing of an intron in the Xbp1 transcript, or suppress gene expression. This referred suppression of gene expression is mediated through degradative cleavage of a select cohort of cellular RNA transcripts, initiating the regulated IRE1-dependent decay (RIDD) pathway. The review first discusses the anti-viral mechanism of the OAS/RNaseL system and evasion tactics employed by different viruses. This is followed by a review of the RIDD pathway and its potential effect on the stability of viral RNAs. I conclude with a comparison of the enzymatic activity of the two RNases followed by deliberations on the physiological consequences of their activation.
    Frontiers in Microbiology 06/2014; 5:292. DOI:10.3389/fmicb.2014.00292 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As an intracellular pattern recognition receptor (PRR), retinoic acid-inducible gene-I (RIG-I) is responsible for detection of nucleic acids from pathogens in infected cells and activation of type I interferon (IFN). In the present study, the 5'-flanking region, introns and single nucleotide polymorphisms (SNPs) of CiRIG-I (Ctenopharyngodon idella RIG-I) were identified and characterized. The genomic CiRIG-I was 12810 bp in length, consisted of an 1864 bp 5'-flank region whose promoter activity was confirmed, fifteen exons and fourteen introns. By pooled DNA sequencing, two SNPs were detected in the 5'-flanking region; ten SNPs were discovered in introns; and one SNP was found in exons. After a challenge experiment, these SNPs were selected to analyze their association with the resistance/susceptibility of C. idella to grass carp reovirus (GCRV), using case-control study. Chi-square test was employed to assess the association. The result showed that -780 C/T, 4731 C/T, 4945 A/G, 8461 C/T, and haplotype 3428A-3432G were significantly associated with the phenotype (P < 0.05). To confirm the correlation, another independent challenge experiment was performed, in which the cumulative mortality of -780 genotype CC, 4731 genotype CC and 4945 genotype AA were significantly lower than that of -780 genotype TT, 4731 genotype TT and 4945 genotype GG, respectively (P < 0.05). In addition, the SNP-SNP interaction analysis revealed that there was no significant interaction among those SNPs (P > 0.05). These significant SNPs and the haplotype might be potential genetic markers for the molecular selection of C. idella strains that are resistant to GCRV.
    Developmental and comparative immunology 12/2012; DOI:10.1016/j.dci.2012.12.004 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: EBV-encoded non-coding RNAs (EBER1 and EBER2) are suggested to be involved in cellular transformation and tumor growth. Cytoplasmic pattern recognition receptor-retinoic acid-inducible gene (RIG-I), which is characterized by the recognition of viral dsRNAs, could efficiently trigger the downstream pathways of innate immunity. Although some previous reports have shown that EBERs and RIG-I associate with hematological malignancies, the role of EBERs-RIG-I signaling in solid tumors remains to be clarified. Here we demonstrate that EBER mediation of the inflammatory response via RIG-I contributes to NPC development in vitro and in vivo. We first verified that the expression level of RIG-I was associated with EBER transcription in NPC cells and specimens from NPC patients. Furthermore, pro-inflammatory cytokine transcription and release were sharply reduced after RIG-I knockdown compared with the control shRNA group in the presence of EBERs, accompanied by an attenuation of the NF-κB and MAPK signaling pathways. Consequently, the tumor burden was greatly alleviated in the RIG-I knockdown group in a xenograft model. In addition, M-CSF and MCP-1, which promote the maturation and attraction of tumor-associated macrophages, were stimulated upon the introduction of EBERs, and this upregulation conceivably led to the tumor-promoting subset transition of the macrophages. Taken together, our results reveal that EBERs could promote NPC progression through RIG-I-mediated cancer-related inflammation. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Cancer Letters 02/2015; 361(1). DOI:10.1016/j.canlet.2015.02.037 · 5.02 Impact Factor