Article

Inhibiting proliferation in KB cancer cells by RNA interference-mediated knockdown of nicotinamide N-methyltransferase expression.

Department of Biochemistry, Biology and Genetics
International journal of immunopathology and pharmacology (Impact Factor: 2.51). 24(1):69-77.
Source: PubMed

ABSTRACT The enzyme Nicotinamide N-methyltransferase (NNMT) catalyzes the methylation of nicotinamide and other pyridines, playing a pivotal role in the biotransformation and detoxification of many drugs and xenobiotic compounds. Several tumours have been associated with abnormal NNMT expression, however its role in tumour development remains largely unknown. In this study we investigated expression levels of Nicotinamide N-methyltransferase in a cancer cell line and we evaluated the effect of shRNA-mediated silencing of NNMT on cell proliferation. Cancer cells were examined for NNMT expression by semiquantitative RT-PCR and Western blot analysis. A HPLC-based catalytic assay was performed to assess enzyme activity. Cells were transfected with four shRNA plasmids against NNMT and control cells were treated with transfection reagent only (mock). The efficiency of gene silencing was detected by Real-Time PCR and Western blot analysis. MTT cell proliferation assay and the soft agar colony formation assay were then applied to investigate the functional changes in cancerous cell. NNMT mRNA was detected in cancer cells, showing a very high expression level. In keeping with the results of RT-PCR analysis, the protein level and NNMT enzyme activity were particularly high in KB cells. ShRNA vectors targeted against NNMT efficiently suppressed gene expression, showing inhibition observed at both the mRNA and protein levels. Down-regulation of NNMT significantly inhibited cell proliferation and decreased colony formation ability on soft agar. The present data support the hypothesis that the enzyme plays a role in tumour expansion and its inhibition could represent a possible molecular approach to the treatment of cancer.

0 Followers
 · 
202 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Lung cancer is the second most commonly diagnosed neoplasm, and represents the leading cause of tumor death worldwide. Since patients are often diagnosed at a late stage, current therapeutic strategies have limited effectiveness and the prognosis remains poor. Successful treatment depends on early diagnosis and knowledge concerning molecular mechanisms underlying lung carcinogenesis. In the present study, we focused on nicotinamide N-methyltransferase (NNMT), which is overexpressed in several malignancies. First, we analysed NNMT expression in a cohort of 36 patients with non-small cell lung cancer (NSCLC) by immunohistochemistry. Subsequently, we examined NNMT expression levels in the human lung cancer cell line A549 by Real-Time PCR, Western blot and catalytic activity assay, and evaluated the effect of NNMT knockdown on cell proliferation and anchorage independent cell growth by MTT and soft-agar colony formation assays, respectively. NSCLC displayed higher NNMT expression levels compared to both tumor-adjacent and surrounding tissue. Moreover, shRNA-mediated gene silencing of NNMT led to a significant inhibition of cell proliferation and colony formation ability on soft agar. Our results show that the downregulation of NNMT significantly reduced in vitro tumorigenicity of A549 cells and suggest that NNMT could represent an interesting molecular target for lung cancer therapy.
    Biological Chemistry 09/2014; 396(3). DOI:10.1515/hsz-2014-0231 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells have huge applications in the field of tissue engineering and regenerative medicine. Their use is currently not restricted to the life-threatening diseases but also extended to disorders involving the structural tissues, which may not jeopardize the patients' life, but certainly influence their quality of life. In fact, a particularly popular line of research is represented by the regeneration of bone and cartilage tissues to treat various orthopaedic disorders. Most of these pioneering research lines that aim to create new treatments for diseases that currently have limited therapies are still in the bench of the researchers. However, in recent years, several clinical trials have been started with satisfactory and encouraging results. This article aims to review the concept of stem cells and their characterization in terms of site of residence, differentiation potential and therapeutic prospective. In fact, while only the bone marrow was initially considered as a "reservoir" of this cell population, later, adipose tissue and muscle tissue have provided a considerable amount of cells available for multiple differentiation. In reality, recently, the so-called "stem cell niche" was identified as the perivascular space, recognizing these cells as almost ubiquitous. In the field of bone and joint diseases, their potential to differentiate into multiple cell lines makes their application ideally immediate through three main modalities: (1) cells selected by withdrawal from bone marrow, subsequent culture in the laboratory, and ultimately transplant at the site of injury; (2) bone marrow aspirate, concentrated and directly implanted into the injury site; (3) systemic mobilization of stem cells and other bone marrow precursors by the use of growth factors. The use of this cell population in joint and bone disease will be addressed and discussed, analysing both the clinical outcomes but also the basic research background, which has justified their use for the treatment of bone, cartilage and meniscus tissues.
    International Orthopaedics 07/2014; 38(9). DOI:10.1007/s00264-014-2445-4 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways.
    Genes & Nutrition 12/2014; 10(1). DOI:10.1007/s12263-014-0444-0 · 3.42 Impact Factor