Article

Cardio-facio-cutaneous syndrome: Does genotype predict phenotype?

Department of Genetics at Children’s Hospital of Eastern Ontario.
American Journal of Medical Genetics Part C Seminars in Medical Genetics (Impact Factor: 3.54). 05/2011; 157(2):129-35. DOI: 10.1002/ajmg.c.30295
Source: PubMed

ABSTRACT Cardio-facio-cutaneous (CFC) syndrome is a sporadic multiple congenital anomalies/mental retardation condition principally caused by mutations in BRAF, MEK1, and MEK2. Mutations in KRAS and SHOC2 lead to a phenotype with overlapping features. In approximately 10–30% of individuals with a clinical diagnosis of CFC, a mutation in one of these causative genes is not found. Cardinal features of CFC include congenital heart defects, a characteristic facial appearance, and ectodermal abnormalities. Additional features include failure to thrive with severe feeding problems, moderate to severe intellectual disability and short stature with relative macrocephaly. First described in 1986, more than 100 affected individuals are reported. Following the discovery of the causative genes, more information has emerged on the breadth of clinical features. Little, however, has been published on genotype–phenotype correlations. This clinical study of 186 children and young adults with mutation-proven CFC syndrome is the largest reported to date. BRAF mutations are documented in 140 individuals (approximately 75%), while 46 (approximately 25%) have a mutation in MEK 1 or MEK 2. The age range is 6 months to 32 years, the oldest individual being a female from the original report [Reynolds et al. (1986); Am J Med Genet 25:413–427]. While some clinical data on 136 are in the literature, 50 are not previously published. We provide new details of the breadth of phenotype and discuss the frequency of particular features in each genotypic group. Pulmonary stenosis is the only anomaly that demonstrates a statistically significant genotype–phenotype correlation, being more common in individuals with a BRAF mutation.

Download full-text

Full-text

Available from: Martin Zenker, Jul 27, 2015
1 Follower
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli, some of which might finally lead up to a maladaptive state. An integral part of the pathogenesis of the hypertrophic cardiomyopathy disease (HCM) is the activation of the rat sarcoma (RAS)/RAF/MEK (mitogen-activated protein kinase kinase)/MAPK (mitogen-activated protein kinase) cascade. Therefore, the molecular signaling involving RAS has been the subject of intense research efforts, particularly after the identification of the RASopathies. These constitute a class of developmental disorders caused by germline mutations affecting proteins contributing to the RAS pathway. Among other phenotypic features, a subset of these syndromes is characterized by HCM, prompting researchers and clinicians to delve into the chief signaling constituents of cardiac hypertrophy. In this review, we summarize current advances in the knowledge of the molecular signaling events involved in the pathogenesis of cardiac hypertrophy through work completed on patients and on genetically manipulated animals with HCM and RASopathies. Important insights are drawn from the recognition of parallels between cardiac hypertrophy and cancer. Future research promises to further elucidate the complex molecular interactions responsible for cardiac hypertrophy, possibly pointing the way for the identification of new specific targets for the treatment of HCM.
    Molecular Medicine 05/2012; 18(9):938-47. DOI:10.2119/molmed.2011.00512 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitogen-activated protein kinase kinases (the MAPK/ERK kinases; MKKs or MEKs) and their downstream substrates, the extracellular-regulated kinases have been intensively studied for their roles in development and disease. Until recently, it had been assumed any mutation affecting their function would have lethal consequences. However, the identification of MEK1 and MEK2 mutations in developmental syndromes as well as chemotherapy-resistant tumors, and the discovery of genomic variants in MEK1 and MEK2 have led to the realization the extent of genomic variation associated with MEKs is much greater than had been appreciated. In this review, we will discuss these recent advances, relating them to what is currently understood about the structure and function of MEKs, and describe how they change our understanding of the role of MEKs in development and disease.
    Briefings in functional genomics 06/2012; 11(4):300-10. DOI:10.1093/bfgp/els022 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The RAS/MAPK pathway proteins with germline mutations in their respective genes are associated with some disorders such as Noonan, LEOPARD (LS), neurofibromatosis type 1, Costello and cardio-facio-cutaneous syndromes. LEOPARD is an acronym, mnemonic for the major manifestations of this disorder, characterized by multiple lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness. Though it is not included in the acronym, hypertrophic cardiomyopathy is the most frequent cardiac anomaly observed, representing a potentially life-threatening problem in these patients. PTPN11, RAF1 and BRAF are the genes known to be associated with LS, identifying molecular genetic testing of the 3 gene mutations in about 95% of affected individuals. PTPN11 mutations are the most frequently found. Eleven different missense PTPN11 mutations (Tyr279Cys/Ser, Ala461Thr, Gly464Ala, Thr468Met/Pro, Arg498Trp/Leu, Gln506Pro, and Gln510Glu/Pro) have been reported so far in LS, 2 of which (Tyr279Cys and Thr468Met) occur in about 65% of the cases. Here, we provide an overview of clinical aspects of this disorder, the molecular mechanisms underlying pathogenesis and major genotype-phenotype correlations.
    Molecular syndromology 10/2012; 3(4):145-57. DOI:10.1159/000342251
Show more