A critical role for autophagy in pancreatic cancer.

Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
Autophagy (Impact Factor: 11.42). 08/2011; 7(8):912-3. DOI: 10.4161/auto.7.8.15762
Source: PubMed

ABSTRACT Autophagy is a regulated catabolic process that leads to the lysosomal degradation of damaged proteins, organelles and other macromolecules, with subsequent recycling of bioenergetic intermediates. The role of autophagy in cancer is undoubtedly complex and likely dependent on tumor type and on the cellular and developmental context. While it has been well demonstrated that autophagy may function as a tumor suppressor, there is mounting evidence that autophagy may have pro-tumorigenic roles, e.g., promoting therapeutic resistance as well as survival under stresses such as hypoxia and nutrient deprivation. These two, seemingly disparate functions can be reconciled by a possible temporal role of autophagy during tumor development, initially suppressing tumor initiation yet supporting tumor growth at later stages.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KRAS mutation, which occurs in ∼95% of pancreatic ductal adenocarcinoma (PDA), has been shown to program tumor metabolism. MCT4 is highly upregulated in a subset of PDA with a glycolytic gene expression program and poor survival. Models with high levels of MCT4 preferentially employ glycolytic metabolism. Selectively in such "addicted" models, MCT4 attenuation compromised glycolytic flux with compensatory induction of oxidative phosphorylation and scavenging of metabolites by macropinocytosis and autophagy. In spite of these adaptations, MCT4 depletion induced cell death characterized by elevated reactive oxygen species and metabolic crisis. Cell death induced by MCT4-depletion was augmented by inhibition of compensatory pathways. In xenograft models, MCT4 had a significant impact on tumor metabolism and was required for rapid tumor growth. Together, these findings illustrate the metabolic diversity of PDA described by MCT4, delineate pathways through which this lactate transporter supports cancer growth, and demonstrate that PDA can be rationally targeted based on metabolic addictions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell reports. 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a lysosome-associated, degradative process that catabolizes cytosolic components to recycle nutrients for further use and maintain cell homeostasis. Hepatitis C virus (HCV) is a major cause of chronic hepatitis, which often leads to end-stage liver-associated diseases and is a significant burden on worldwide public health. Emerging lines of evidence indicate that autophagy plays an important role in promoting the HCV life cycle in host cells. Moreover, the diverse impacts of autophagy on a variety of signaling pathways in HCV-infected cells suggest that the autophagic process is required for balancing HCV-host cell interactions and involved in the pathogenesis of HCV-related liver diseases. However, the detailed molecular mechanism underlying how HCV activates autophagy to benefit viral growth is still enigmatic. Additionally, how the autophagic response contributes to disease progression in HCV-infected cells remains largely unknown. Hence, in this review, we overview the interplay between autophagy and the HCV life cycle and propose possible mechanisms by which autophagy may promote the pathogenesis of HCV-associated chronic liver diseases. Moreover, we outline the related studies on how autophagy interplays with HCV replication and discuss the possible implications of autophagy and viral replication in the progression of HCV-induced liver diseases, e.g., steatosis and hepatocellular carcinoma. Finally, we explore the potential therapeutics that target autophagy to cure HCV infection and its related liver diseases.
    World Journal of Gastroenterology 05/2014; 20(19):5773-5793. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies suggest an important role of autophagy as a target for cancer therapy. We constructed a "disease-gene-drug" network using the modular approach of bioinformatics and screened herbal monomers demonstrating functions related to autophagy regulation. Based on the microarray results of the gene expression omnibus (GEO) database (GSE2435 and GSE31040, starvation-induced autophagy model), we used the human protein reference database (HPRD) to obtain the protein-protein interaction (PPI) network. In addition, we used the CFinder software to identify several functional modules, performed gene ontology-biological process (GO-BP) functional enrichment analysis using the DAVID software, constructed a herbal monomer-module gene regulatory network using literature search and the Cytoscape software, and then analyzed the relationships between autophagy, genes, and herbal monomers. We screened 544 differentially expressed genes related to autophagy, 375 pairs of differentially expressed genes, and 7 gene modules, wherein the functions of module 3 (composed of 7 genes) were enriched in "cell death". Using the constructed herbal monomer-module gene regulatory network, we found that 30 herbal monomers can simultaneously regulate these 7 genes, indicating a potential regulatory role in autophagy. Database screening using the disease-gene-drug network can provide new strategies and ideas for the application of herbal medicines in cancer therapy.
    BMC Complementary and Alternative Medicine 12/2014; 14(1):466. · 1.88 Impact Factor


Available from