Article

Knockdown of the β(1) integrin subunit reduces primary tumor growth and inhibits pancreatic cancer metastasis.

Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
International Journal of Cancer (Impact Factor: 6.2). 01/2011; 129(12):2905-15. DOI: 10.1002/ijc.25942
Source: PubMed

ABSTRACT To address the role of β(1) integrins in pancreatic cancer progression, we stably knocked down β(1) integrin subunit expression in human FG-RFP pancreatic cancer cells using lentiviral-based RNA interference. We then examined the effects of β(1) integrin subunit knockdown on pancreatic cancer cell adhesion, migration and proliferation on tumor microenvironment-specific extracellular matrix proteins in vitro and on tumor progression in vivo using a clinically relevant fluorescent orthotopic mouse model of pancreatic cancer. Knockdown of the β(1) integrin subunit inhibited cell adhesion, migration and proliferation on types I and IV collagen, fibronectin and laminin in vitro. In vivo, knockdown of the β(1) integrin subunit reduced primary tumor growth by 50% and completely inhibited spontaneously occurring metastasis. These observations indicate a critical role for the β(1) integrin subunit in pancreatic cancer progression and metastasis in particular. Our results suggest the β(1) integrin subunit as a therapeutic target for the treatment of pancreatic cancer, especially in the adjuvant setting to prevent metastasis of this highly aggressive cancer.

0 Bookmarks
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After neoplastic cells leave the primary tumor and circulate, they may extravasate from the vasculature and colonize tissues to form metastases. β1 integrins play diverse roles in tumorigenesis and tumor progression, including extravasation. In blood cells, activation of β1 integrins can be regulated by "inside-out" signals leading to extravasation from the circulation into tissues. However, a role for inside-out β1 activation in tumor cell metastasis is uncertain. Here we show that β1 integrin activation promotes tumor metastasis and that activated β1 integrin may serve as a biomarker of metastatic human melanoma. To determine whether β1 integrin activation can influence tumor cell metastasis, the β1 integrin subunit in melanoma and breast cancer cell lines was stably knocked down with shRNA and replaced with wild-type or constitutively-active β1. When tumor cells expressing constitutively-active β1 integrins were injected intravenously into chick embryos or mice, they demonstrated increased colonization of the liver when compared to cells expressing wild-type β1 integrins. Rescue expression with mutant β1 integrins revealed that tumor cell extravasation and hepatic colonization required extracellular ligand binding to β1 as well as β1 interaction with talin, an intracellular mediator of integrin activation by the Rap1 GTPase. Furthermore, shRNA-mediated knock down of talin reduced hepatic colonization by tumor cells expressing wild-type β1, but not constitutively-active β1. Overexpression in tumor cells of the tumor suppressor, Rap1GAP, inhibited Rap1 and β1 integrin activation as well as hepatic colonization. Using an antibody that detects activated β1 integrin, we found higher levels of activated β1 integrins in human metastatic melanomas compared to primary melanomas, suggesting that activated β1 integrin may serve as a biomarker of invasive tumor cells. Altogether, these studies establish that inside-out activation of β1 integrins promotes tumor cell extravasation and colonization, suggesting diagnostic and therapeutic approaches for targeting of β1 integrin signaling in neoplasia.
    PLoS ONE 01/2012; 7(10):e46576. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many cellular processes, such as migration, proliferation, wound healing and tumor progression are based on cell adhesion. Amongst different cell adhesion molecules, the integrin receptors play a very significant role. Over the past decades the function and signalling of various such integrins have been studied by incorporating the proteins into lipid membranes. These proteolipid structures lay the foundation for the development of artificial cells, which are able to adhere to substrates. To build biomimetic models for studying cell shape and spreading, actin networks can be incorporated into lipid vesicles, too. We here review the mechanisms of integrin-mediated cell adhesion and recent advances in the field of minimal cells towards synthetic adhesion. We focus on reconstituting integrins into lipid structures for mimicking cell adhesion and on the incorporation of actin networks and talin into model cells.
    Beilstein Journal of Nanotechnology 01/2014; 5:1193-1202. · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma is the most frequent and malignant human brain tumor. High level of genomic instability detected in glioma cells implies that numerous genetic alterations accumulate during glioma pathogenesis. We investigated alterations in AP-PCR DNA profiles of 30 glioma patients, and detected specific changes in 11 genes not previously associated with this disease: LHFPL3, SGCG, HTR4, ITGB1, CPS1, PROS1, GP2, KCNG2, PDE4D, KIR3DL3, and INPP5A. Further correlations revealed that 8 genes might play important role in pathogenesis of glial tumors, while changes in GP2, KCNG2 and KIR3DL3 should be considered as passenger mutations, consequence of high level of genomic instability. Identified genes have a significant role in signal transduction or cell adhesion, which are important processes for cancer development and progression. According to our results, LHFPL3 might be characteristic of primary glioblastoma, SGCG, HTR4, ITGB1, CPS1, PROS1 and INPP5A were detected predominantly in anaplastic astrocytoma, suggesting their role in progression of secondary glioblastoma, while alterations of PDE4D seem to have important role in development of both glioblastoma subtypes. Some of the identified genes showed significant association with p53, p16, and EGFR, but there was no significant correlation between loss of PTEN and any of identified genes. In conclusion our study revealed genetic alterations that were not previously associated with glioma pathogenesis and could be potentially used as molecular markers of different glioblastoma subtypes.
    PLoS ONE 01/2013; 8(12):e82108. · 3.53 Impact Factor

Full-text (2 Sources)

View
30 Downloads
Available from
May 23, 2014