MDCK cystogenesis driven by cell stabilization within computational analogues.

UCSF/UC Berkeley Joint Graduate Group in Bioengineering, University of California, San Francisco, California, USA.
PLoS Computational Biology (Impact Factor: 4.83). 04/2011; 7(4):e1002030. DOI: 10.1371/journal.pcbi.1002030
Source: PubMed

ABSTRACT The study of epithelial morphogenesis is fundamental to increasing our understanding of organ function and disease. Great progress has been made through study of culture systems such as Madin-Darby canine kidney (MDCK) cells, but many aspects of even simple morphogenesis remain unclear. For example, are specific cell actions tightly coupled to the characteristics of the cell's environment or are they more often cell state dependent? How does the single lumen, single cell layer cyst consistently emerge from a variety of cell actions? To improve insight, we instantiated in silico analogues that used hypothesized cell behavior mechanisms to mimic MDCK cystogenesis. We tested them through in vitro experimentation and quantitative validation. We observed novel growth patterns, including a cell behavior shift that began around day five of growth. We created agent-oriented analogues that used the cellular Potts model along with an Iterative Refinement protocol. Following several refinements, we achieved a degree of validation for two separate mechanisms. Both survived falsification and achieved prespecified measures of similarity to cell culture properties. In silico components and mechanisms mapped to in vitro counterparts. In silico, the axis of cell division significantly affects lumen number without changing cell number or cyst size. Reducing the amount of in silico luminal cell death had limited effect on cystogenesis. Simulations provide an observable theory for cystogenesis based on hypothesized, cell-level operating principles.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Living matter equals water, to a first approximation, and water transport across barriers such as membranes and epithelia is vital. Water serves two competing functions. On the one hand, it is the fundamental solvent enabling random mobility of solutes and therefore biochemical reactions and intracellular signal propagation. Homeostasis of the intracellular water volume is required such that messenger concentration encodes the stimulus and not inverse volume fluctuations. On the other hand, water flow is needed for transport of solutes to and away from cells in a directed manner, threatening volume homeostasis and signal transduction fidelity of cells. Feedback regulation of fluid transport reconciles these competing objectives. The regulatory mechanisms often span across multiple spatial scales from cellular interactions up to the architecture of organs. Open questions relate to the dependency of water fluxes and steady state volumes on control parameters and stimuli. We here review selected mathematical models of feedback regulation of fluid transport at the cell scale and identify a general "core-shell" structure of such models. We propose that fluid transport models at other spatial scales can be constructed in a generalised core-shell framework, in which the core accounts for the biophysical effects of fluid transport whilst the shell reflects the regulatory mechanisms. We demonstrate the applicability of this framework for tissue lumen growth and suggest future experiments in zebrafish to test lumen size regulation mechanisms. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Bio Systems 02/2015; · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog's plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability.
    PLoS ONE 09/2014; 9(9):e108392. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation plays a critical role in the development and progression of cancer, evident in multiple patient populations manifesting increased, non-resolving inflammation, such as inflammatory bowel disease, viral hepatitis and obesity. Given the complexity of both the inflammatory response and the process of oncogenesis, we utilize principles from the field of Translational Systems Biology to bridge the gap between basic mechanistic knowledge and clinical/epidemiologic data by integrating inflammation and oncogenesis within an agent-based model, the Inflammation and Cancer Agent-based Model (ICABM). The ICABM utilizes two previously published and clinically/epidemiologically validated mechanistic models to demonstrate the role of an increased inflammatory milieu on oncogenesis. Development of the ICABM required the creation of a generative hierarchy of the basic hallmarks of cancer to provide a foundation to ground the plethora of molecular and pathway components currently being studied. The ordering schema emphasizes the essential role of a fitness/selection frame shift to sub-organismal evolution as a basic property of cancer, where the generation of genetic instability as a negative effect for multicellular eukaryotic organisms represents the restoration of genetic plasticity used as an adaptive strategy by colonies of prokaryotic unicellular organisms. Simulations with the ICABM demonstrate that inflammation provides a functional environmental context that drives the shift to sub-organismal evolution, where increasingly inflammatory environments led to increasingly damaged genomes in microtumors (tumors below clinical detection size) and cancers. The flexibility of this platform readily facilitates tailoring the ICABM to specific cancers, their associated mechanisms and available epidemiological data. One clinical example of an epidemiological finding that could be investigated with this platform is the increased incidence of triple negative breast cancers in the premenopausal African-American population, which has been identified as having up-regulated of markers of inflammation. The fundamental nature of the ICABM suggests its usefulness as a base platform upon which additional molecular detail could be added as needed.
    Mathematical Biosciences 07/2014; 260. · 1.49 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014