Article

The role of the fat mass and obesity associated gene (FTO) in breast cancer risk

Cancer Genetics Program, Division of Hematology/Oncology, Department of Medicine and Robert H, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 676 N St Clair st suite 850, Chicago, IL 60611, USA.
BMC Medical Genetics (Impact Factor: 2.45). 04/2011; 12:52. DOI: 10.1186/1471-2350-12-52
Source: PubMed

ABSTRACT Obesity has been shown to increase breast cancer risk. FTO is a novel gene which has been identified through genome wide association studies (GWAS) to be related to obesity. Our objective was to evaluate tissue expression of FTO in breast and the role of FTO SNPs in predicting breast cancer risk.
We performed a case-control study of 354 breast cancer cases and 364 controls. This study was conducted at Northwestern University. We examined the role of single nucleotide polymorphisms (SNPs) of intron 1 of FTO in breast cancer risk. We genotyped cases and controls for four SNPs: rs7206790, rs8047395, rs9939609 and rs1477196. We also evaluated tissue expression of FTO in normal and malignant breast tissue.
We found that all SNPs were significantly associated with breast cancer risk with rs1477196 showing the strongest association. We showed that FTO is expressed both in normal and malignant breast tissue. We found that FTO genotypes provided powerful classifiers to predict breast cancer risk and a model with epistatic interactions further improved the prediction accuracy with a receiver operating characteristic (ROC) curves of 0.68.
In conclusion we have shown a significant expression of FTO in malignant and normal breast tissue and that FTO SNPs in intron 1 are significantly associated with breast cancer risk. Furthermore, these FTO SNPs are powerful classifiers in predicting breast cancer risk.

0 Followers
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron(II) and 2-oxoglutarate (2OG)-dependent dioxygenases involved in histone and DNA/RNA demethylation convert the cosubstrate 2OG and oxygen to succinate and carbon dioxide, resulting in hydroxylation of the methyl group of the substrates and subsequent demethylation. Recent evidence has shown that these 2OG dioxygenases play vital roles in a variety of biological processes, including transcriptional regulation and gene expression. In this review, the structure and function of these dioxygenases in histone and nucleic acid demethylation will be discussed. Given the important roles of these 2OG dioxygenases, detailed analysis and comparison of the 2OG dioxygenases will guide the design of target-specific small-molecule chemical probes and inhibitors.
    11/2014; 1(Pt 6):540-549. DOI:10.1107/S2052252514020922
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The FTO (fat mass and obesity-associated) gene has a strong linkage disequilibrium block, within which SNPs have been identified that are involved in the development of obesity. Recently some of these variants have also been associated with cancer. However, identification of the possible mechanisms that could explain these associations has proven to be elusive. It has been found that FTO polymorphisms can regulate the expression of genes at large kilobases of distance as well as the expression of the FTO gene itself, and regions for transcription factor binding. To date it has been observed that variants rs9939609, rs17817449, rs8050136, rs1477196, rs6499640, rs16953002, rs11075995 and rs1121980 are associated with the risk of developing cancer. Some studies have produced negative results when comparing the same polymorphisms, but make a simple association between polymorphic variants and cancer, have proved difficult because this relation is by nature multifactorial. A certain degree of variation resulting from the improper design of studies or processing of data can lead to erroneous conclusions. However, it is now unquestionable that certain FTO polymorphisms regulate genetic expression related to cancer susceptibility, although this field is just beginning to be understood.
    Molecular Biology Reports 11/2014; 42(3). DOI:10.1007/s11033-014-3817-y · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N6-methyladenosine (m6A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m6A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m6A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine.
    Nucleic Acids Research 12/2014; 43(1). DOI:10.1093/nar/gku1276 · 8.81 Impact Factor

Full-text (3 Sources)

Download
10 Downloads
Available from
Sep 2, 2014