Effect of nitrogen adsorption on the mid-infrared spectrum of water clusters.

Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, D-38106 Braunschweig, Germany.
The Journal of Physical Chemistry A (Impact Factor: 2.77). 06/2011; 115(23):6218-25. DOI: 10.1021/jp111481q
Source: PubMed

ABSTRACT Experimental Fourier-transform infrared spectra and DFT calculated infrared spectra are compared to investigate the effect of adsorbed nitrogen on the OH-stretch band complex of water clusters. Using a collisional cooling experiment, pure as well as partially and completely N(2)-covered water clusters consisting of 20-200 water molecules have been generated in thermal equilibrium in the aerosol phase within the temperature range of 5-80 K. Computational IR-spectra simulations have been performed for discrete pure and N(2)-covered water clusters including 10, 15, 20, and 30 water molecules. The adsorbed N(2) molecules especially affect the three-coordinated water molecules at the cluster surface which could be observed as a blue shift of the companion O-H band at 2900 cm(-1) and a red shift of the dangling O-H band at 3700 cm(-1) by about 20 cm(-1) in both cases. The most striking effect of the N(2) adsorbate is an intensity increase of the dangling O-H band by a factor of 3-5. Furthermore, the onset temperature of nitrogen adsorption at the water cluster surface was experimentally found to be roughly 30 K for cluster sizes of about 100 water molecules. Experimental and computational results are in good agreement. The presented results are based on and support the work of V. Buch, J. P. Devlin, and co-workers (e.g., J. Phys. Chem. B, 1997; J. Phys. Chem. A, 2003; Int. Rev. Phys. Chem., 2004).

  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermal properties and structures of the water cluster containing fifteen molecules, either pure or doped with methane, are studied via classical parallel tempering Monte Carlo calculations in the isothermal-isobaric ensemble. The main emphasis is on structural transformations the cluster undergoes with increasing temperature and pressure. A simple TIP4P interaction model is employed for water and the unified-atom approximation with a Lennard-Jones potential is used to model the methane-water interaction. The results are compared with the data obtained recently for zero temperature via evolutionary algorithm calculations [Hartke, J. Chem. Phys., 2009, 130 art. no. 024905].
    Physical Chemistry Chemical Physics 10/2012; 14(44):15509-19. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the quest to understand the formation of the building blocks of life, amorphous solid water (ASW) is one of the most widely studied molecular systems. Indeed, ASW is ubiquitous in the cold interstellar medium (ISM), where ASW-coated dust grains provide a catalytic surface for solid phase chemistry, and is believed to be present in the Earth's atmosphere at high altitudes. It has been shown that the ice surface adsorbs small molecules such as CO, N$_2$, or CH$_4$, most likely at OH groups dangling from the surface. Our study presents completely new insights concerning the behaviour of ASW upon selective infrared (IR) irradiation of its dangling modes. When irradiated, these surface H$_2$O molecules reorganise, predominantly forming a stabilised monomer-like water mode on the ice surface. We show that we systematically provoke "hole-burning" effects (or net loss of oscillators) at the wavelength of irradiation and reproduce the same absorbed water monomer on the ASW surface. Our study suggests that all dangling modes share one common channel of vibrational relaxation; the ice remains amorphous but with a reduced range of binding sites, and thus an altered catalytic capacity.
    The Journal of Physical Chemistry Letters. 02/2014; 5(5).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mid-infrared spectra have been measured for cubic ice (I(c)) nanoparticles (3-150 nm diameter) formed by rapid collisional cooling over a wide range of temperatures (5-209 K). Spectral diagnostics, such as the ratio of surface related dangling OH to interior H-bonded OH stretch bands, reveal the manner in which particle size depends on bath gas temperature and density, and on water molecule concentration. For particles smaller than 5 nm strained intermolecular bonds on the surface and subsurface cause the predominant OH stretch peak position to be dramatically blue shifted by up to 40 cm(-1). In the size regime of 8-200 nm the position of the OH stretch absorption band maximum is relatively unaffected by particle size and it is possible to measure the temperature dependence of the peak location without influences from the surface or scattering. The band maximum shifts in a linear fashion from 3218 cm(-1) at 30 K to 3253 cm(-1) at 209 K, which may assist with temperature profiling of ice particles in atmospheric clouds and extraterrestrial systems. Over the same temperature range the librational mode band shifts very little, from 870 to 860 cm(-1). In the water stretching and bending regions discrete spectral features associated with the surface or sub-surface layers have been detected in particles as large as 80 nm.
    Physical Chemistry Chemical Physics 02/2013; · 4.20 Impact Factor