Dehydroepiandrosterone protects against oxidative stress-induced endothelial dysfunction in ovariectomized rats

Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of S˜ao Paulo, SP, Brazil.
The Journal of Physiology (Impact Factor: 4.54). 05/2011; 589(Pt 10):2585-96. DOI: 10.1113/jphysiol.2011.206078
Source: PubMed

ABSTRACT Cardiovascular disease is less frequent in premenopausal women than in age-matched men or postmenopausal women. Moreover, the marked age-related decline in serum dehydroepiandrosterone (DHEA) level has been associated to cardiovascular disease. The aim of this study was to evaluate the effects of DHEA treatment on vascular function in ovariectomized rats. At 8 weeks of age, female Wistar rats were ovariectomized (OVX) or sham (SHAM) operated and 8 weeks after surgery both groups were treated with vehicle or DHEA (10mg kg⁻¹ week⁻¹) for 3 weeks. Aortic rings were used to evaluate the vasoconstrictor response to phenylephrine (PHE) and the relaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP). Tissue reactive oxygen species (ROS) production and SOD, NADPH oxidase and eNOS protein expression were analysed. PHE-induced contraction was increased in aortic rings from OVX compared to SHAM, associated with a reduction in NO bioavailability. Furthermore, the relaxation induced by ACh was reduced in arteries from OVX, while SNP relaxation did not change. The incubation of aortic rings with SOD or apocynin restored the enhanced PHE-contraction and the impaired ACh-relaxation only in OVX. DHEA treatment corrected the increased PHE contraction and the impaired ACh-induced relaxation observed in OVX by an increment in NO bioavailability and decrease in ROS production. Besides, DHEA treatment restores the reduced Cu/Zn-SOD protein expression and eNOS phosphorylation and the increased NADPH oxidase protein expression in the aorta of OVX rats. The present results suggest an important action of DHEA, improving endothelial function in OVX rats by acting as an antioxidant and enhancing the NO bioavailability.

Download full-text


Available from: Celso Rodrigues Franci, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tardive dyskinesia (TD) is a potentially irreversible consequence of long term treatment with antipsychotic drugs which is according to a well-known theory believed to be related to oxidative stress induced neurotoxicity. Dehydroepiandrosterone (DHEA) is an endogenous antioxidant with neuroprotective activity. The biosynthesis of DHEA depends upon the activity of cytochrome P450c17α (CYP17). The gene that encodes for CYP17 has a (T34C) single nucleotide polymorphism which enhances CYP17 transcription and expression. To test the hypothesis that carriership of a more active CYP17 variant would result in higher DHEA(S) levels and protect against neurotoxicity which results in orofaciolingual TD (TDof), limb-truncal TD (TDlt) or both (TDsum)? Tardive dyskinesia was assessed cross-sectionally in 146 Caucasian psychiatric inpatients from Siberia. Patients who are carriers of the Cyp17 genotype CC have less chance of developing TD compared to patients who are carriers of the Cyp17 genotypes TC or TT (p<0.05). However, these carriers have significant lower circulating DHEAS levels compared to carriers of the Cyp17 genotypes TC and TT (p<0.05). Conversely, carriers of the CYP17 T-allele have significant elevated DHEAS levels. After correcting for gender and age no significant relationship between Cyp17 genotype CC, the T-allelle and the C-allele and the DHEAS concentration of patients was observed. Conclusions: Although an association between the CYP17 CC genotype and TD is indicated, our findings do not support the hypothesis that this is mediated through increased DHEA(S) levels. We believe that the relationship between this polymorphism and neuroprotective effects of steroids is more complex and cannot be elucidated without taking the posttranslational regulation of the enzyme into account.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 01/2014; 50. DOI:10.1016/j.pnpbp.2013.12.015 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The renin-angiotensin system (RAS) plays a major role in cardiovascular diseases in postmenopausal women, but little is known about its importance to the lower urinary tract symptoms. In this study we have used the model of ovariectomized (OVX) estrogen-deficient rats to investigate the role of RAS in the functional and molecular alterations in urethra and bladder. Responses to contractile and relaxant agents in isolated urethra and bladder, as well as cystometry were evaluated in 4-month OVX Sprague-Dawley rats. Angiotensin-converting enzyme activity and Western blotting for AT1/AT2 receptors were examined. Cystometric evaluations in OVX rats showed increases in basal pressure, capacity and micturition frequency, as well as decreased voiding pressure. Angiotensin II and phenylephrine produced greater urethral contractions in OVX compared with sham group. Carbachol-induced bladder contractions were significantly reduced in OVX group. Relaxations of urethra and bladder to sodium nitroprusside and BAY 41-2272 were unaffected by OVX. Angiotensin-converting enzyme activity was 2.6-fold greater (p<0.05) in urethral tissue of OVX group, whereas enzyme activity in plasma and bladder remained unchanged. Expressions of AT1 and AT2 receptors in urethra were markedly higher in OVX group. In bladder, AT1 receptors were not detected, whereas AT2 receptor expression was unchanged between groups. 17β-estradiol replacement (0.1mg/kg, weekly) or losartan (30mg/kg/day) largely attenuated most of the alterations seen in OVX group. Prolonged estrogen deprivation leads to voiding dysfunction and urethral hypercontractility that are associated with increased ACE activity and up-regulation of angiotensin AT1/AT2 receptor in the urethral tissue.
    Life sciences 09/2013; 93(22). DOI:10.1016/j.lfs.2013.09.008 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence indicates that hypoestrogenemia is linked with accelerated progression of atherosclerosis. Premenopausal women presenting with ovulatory disruption due to functional hypothalamic amenorrhea (FHA) are characterized by hypoestrogenemia. One common and reversible form of FHA in association with energy deficiency is exercise-associated amenorrhea (EAA). Articles were found via PubMed search for both original and review articles based on peer review publications between 1974 and 2011 reporting on cardiovascular changes in women with FHA, with emphasis placed on women with EAA. Despite participation in regular exercise training, hypoestrogenic women with EAA demonstrate paradoxical changes in cardiovascular function, including endothelial dysfunction, a known permissive factor for the progression and development of atherosclerosis. Such alterations suggest that the beneficial effects of regular exercise training on vascular function are obviated in the face of hypoestrogenemia. The long-term cardiovascular consequences of altered vascular function in response to ovulatory disruption in women with EAA remain to be determined. Retrospective data, however, suggest premature development and progression of coronary artery disease in older premenopausal women reporting a history of hypothalamic ovulatory disruption. Importantly, in women with EAA, estrogen therapy, folic acid supplementation without change in menstrual status, and resumption of menses restores endothelial function. In this review, we focus on the influence of hypoestrogenemia in association with energy deficiency in mediating changes in cardiovascular function in women with EAA, including endothelial function, regional blood flow, lipid profile, and autonomic control of blood pressure, heart rate, and baroreflex sensitivity. The influence of exercise training is also considered. With the premenopausal years typically considered to be cardioprotective in association with normal ovarian function, ovarian disruption in women with EAA is of importance. Further investigation of the short-term, and potentially long-term, cardiovascular consequences of hypoestrogenemia in women with EAA is recommended.
    The Journal of Clinical Endocrinology and Metabolism 09/2011; 96(12):3638-48. DOI:10.1210/jc.2011-1223 · 6.31 Impact Factor