Increasing malaria hospital admissions in Uganda between 1999 and 2009. BMC Med 9:37

Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya.
BMC Medicine (Impact Factor: 7.25). 04/2011; 9(1):37. DOI: 10.1186/1741-7015-9-37
Source: PubMed


Some areas of Africa are witnessing a malaria transition, in part due to escalated international donor support and intervention coverage. Areas where declining malaria rates have been observed are largely characterized by relatively low baseline transmission intensity and rapid scaling of interventions. Less well described are changing patterns of malaria burden in areas of high parasite transmission and slower increases in control and treatment access.
Uganda is a country predominantly characterized by intense, perennial malaria transmission. Monthly pediatric admission data from five Ugandan hospitals and their catchments have been assembled retrospectively across 11 years from January 1999 to December 2009. Malaria admission rates adjusted for changes in population density within defined catchment areas were computed across three time periods that correspond to periods where intervention coverage data exist and different treatment and prevention policies were operational. Time series models were developed adjusting for variations in rainfall and hospital use to examine changes in malaria hospitalization over 132 months. The temporal changes in factors that might explain changes in disease incidence were qualitatively examined sequentially for each hospital setting and compared between hospital settings
In four out of five sites there was a significant increase in malaria admission rates. Results from time series models indicate a significant month-to-month increase in the mean malaria admission rates at four hospitals (trend P < 0.001). At all hospitals malaria admissions had increased from 1999 by 47% to 350%. Observed changes in intervention coverage within the catchments of each hospital showed a change in insecticide-treated net coverage from <1% in 2000 to 33% by 2009 but accompanied by increases in access to nationally recommended drugs at only two of the five hospital areas studied.
The declining malaria disease burden in some parts of Africa is not a universal phenomena across the continent. Despite moderate increases in the coverage of measures to reduce infection and disease without significant coincidental increasing access to effective medicines to treat disease may not lead to severe disease burden reductions in high transmission areas of Africa. More data is needed from a wider range of malaria settings to provide an honest tracking progress of the impact of scaled intervention coverage in Africa.

Download full-text


Available from: Victor Alegana, Oct 04, 2015
21 Reads
  • Source
    • "In addition, changes in malaria burden appear to have occurred before scaling up of malaria control interventions [20]. There have been increases in malaria-associated hospital admissions in Uganda [21]. Thus decreases in the malaria burden following scaling up of malaria interventions in Africa have not occurred uniformly. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The recent decline in malaria incidence in many African countries has been attributed to the provision of prompt and effective anti-malarial treatment using artemisinin-based combination therapy (ACT) and to the widespread distribution of long-lasting, insecticide-treated bed nets (LLINs). At a malaria vaccine-testing site in Bandiagara, Mali, ACT was introduced in 2004, and LLINs have been distributed free of charge since 2007 to infants after they complete the Expanded Programme of Immunization (EPI) schedule and to pregnant women receiving antenatal care. These strategies may have an impact on malaria incidence. Methods To document malaria incidence, a cohort of 400 children aged 0 to 14 years was followed for three to four years up to July 2013. Monthly cross-sectional surveys were done to measure the prevalence of malaria infection and anaemia. Clinical disease was measured both actively and passively through continuous availability of primary medical care. Measured outcomes included asymptomatic Plasmodium infection, anaemia and clinical malaria episodes. Results The incidence rate of clinical malaria varied significantly from June 2009 to July 2013 without a clear downward trend. A sharp seasonality in malaria illness incidence was observed with higher clinical malaria incidence rates during the rainy season. Parasite and anaemia point prevalence also showed seasonal variation with much higher prevalence rates during rainy seasons compared to dry seasons. Conclusions Despite the scaling up of malaria prevention and treatment, including the widespread use of bed nets, better diagnosis and wider availability of ACT, malaria incidence did not decrease in Bandiagara during the study period.
    Malaria Journal 09/2014; 13(1):374. DOI:10.1186/1475-2875-13-374 · 3.11 Impact Factor
  • Source
    • "Despite this, only 60% of the participants in the trial had evidence of malaria; and four of the six inpatient fatalities were in children with non-malarial febrile illnesses, indicating that the study has external validity for pragmatic management of children with severe anemia, including anemia with a non-malaria etiology. The study findings remain pertinent since, in many places, malaria has remained at the same or increased levels [24] and thus severe anemia remains a major cause of hospitalization in sub-Saharan Africa. The high frequency of children with sickle cell anemia has been noted previously in other hospital studies of severe anemia in malaria-endemic Africa [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe anemia (SA, hemoglobin <6 g/dl) is a leading cause of pediatric hospital admission in Africa, with significant in-hospital mortality. The underlying etiology is often infectious, but specific pathogens are rarely identified. Guidelines developed to encourage rational blood use recommend a standard volume of whole blood (20 ml/kg) for transfusion, but this is commonly associated with a frequent need for repeat transfusion and poor outcome. Evidence is lacking on what hemoglobin threshold criteria for intervention and volume are associated with the optimal survival outcomes. We evaluated the safety and efficacy of a higher volume of whole blood (30 ml/kg; Tx30: n = 78) against the standard volume (20 ml/kg; Tx20: n = 82) in Ugandan children (median age 35.5 months (interquartile range (IQR) 12.5 to 52.5)) for 24-hour anemia correction (hemoglobin >6 g/dl: primary outcome) and 28-day survival. Median admission hemoglobin was 4.2 g/dl (IQR 3.1 to 4.9). Initial volume received followed the randomization strategy in 155 (97%) patients. By 24-hours, 70 (90%) children in the Tx30 arm had corrected SA compared to 61 (74%) in the Tx20 arm; cause-specific hazard ratio = 1.54 (95% confidence interval 1.09 to 2.18, P = 0.01). From admission to day 28 there was a greater hemoglobin increase from enrollment in Tx30 (global P <0.0001); serious adverse events included one non-fatal allergic reaction and one death in the Tx30 arm. There were six deaths in the Tx20 arm (P = 0.12); three deaths were adjudicated as possibly related to transfusion, but none secondary to volume overload. A higher initial transfusion volume prescribed at hospital admission was safe and resulted in an accelerated hematological recovery in Ugandan children with SA. Future testing in a large, pragmatic clinical trial to establish the effect on short and longer-term survival is warranted.Please see related commentary article registration: ClinicalTrials.Gov identifier: NCT01461590 registered 26 October 2011.
    BMC Medicine 04/2014; 12(1):67. DOI:10.1186/1741-7015-12-67 · 7.25 Impact Factor
  • Source
    • "In the past decade, increased donor financing and widespread scale-up of malaria control measures have substantially reduced the malaria burden in several countries [2-7]. However, these findings have not been consistent across Africa [8], and malaria-associated morbidity and mortality remains high in some countries, including Uganda [9-11]. In 2010, the World Health Organization (WHO) released new guidelines for malaria diagnosis and treatment recommending that suspected cases be confirmed by a parasitological test prior to treatment, when possible [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In Africa, inadequate health services contribute to the lack of progress on malaria control. Evidence of the impact of interventions to improve health services on population-level malaria indicators is needed. We are conducting a cluster-randomised trial to assess whether a complex intervention delivered at public health centres in Uganda improves health outcomes of children and treatment of malaria, as compared to the current standard of care. Twenty public health centres (level II and III) in Tororo district will be included; 10 will be randomly assigned to the intervention and 10 to control. Clusters will include households located within 2 km of health centres. The trial statistician will generate the random allocation sequence and assign clusters. Health centres will be stratified by level, and restricted randomisation will be employed to ensure balance on cluster location and size. Allocation will not be blinded.The intervention includes training in health centre management, fever case management with use of rapid diagnostic tests (RDTs) for malaria, and patient-centered services, and provision of artemether-lumefantrine (AL) and RDTs when stocks run low. The impact of the intervention on population-level health indicators will be assessed through community surveys conducted at baseline in randomly selected children from each cluster, and repeated annually for two years. The impact on individuals over time will be assessed in a cohort study of children recruited from households randomly selected per cluster. The impact on health centres will be assessed using patient exit interviews, monthly surveillance, and assessment of health worker knowledge and skills. The primary outcome is the prevalence of anaemia (haemoglobin <11.0 g/dL) in individual children under five measured in the annual community surveys. The primary analysis will be based on the cluster-level results. The PRIME trial findings will be supplemented by the PROCESS study, an evaluation of the process, context, and wider impact of the PRIME intervention which will be conducted alongside the main trial, together providing evidence of the health impact of a public sector intervention in Uganda.Trial registration and funding: This trial is registered at (NCT01024426) and is supported by the ACT Consortium.
    Implementation Science 09/2013; 8(1):114. DOI:10.1186/1748-5908-8-114 · 4.12 Impact Factor
Show more