The Effects of Face Expertise Training on the Behavioral Performance and Brain Activity of Adults with High Functioning Autism Spectrum Disorders

Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
Journal of Autism and Developmental Disorders (Impact Factor: 3.06). 04/2011; 42(2):278-93. DOI: 10.1007/s10803-011-1243-8
Source: PubMed

ABSTRACT The effect of expertise training with faces was studied in adults with ASD who showed initial impairment in face recognition. Participants were randomly assigned to a computerized training program involving either faces or houses. Pre- and post-testing included standardized and experimental measures of behavior and event-related brain potentials (ERPs), as well as interviews after training. After training, all participants met behavioral criteria for expertise with the specific stimuli on which they received training. Scores on standardized measures improved after training for both groups, but only the face training group showed an increased face inversion effect behaviorally and electrophysiological changes to faces in the P100 component. These findings suggest that individuals with ASD can gain expertise in face processing through training.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: This randomized controlled trial evaluated the efficacy of a computer software (i.e., Mind Reading) and in vivo rehearsal treatment on the emotion decoding and encoding skills, autism symptoms, and social skills of 43 children, ages 7–12 years with high-functioning autism spectrum disorder (HFASD). Children in treatment (n = 22) received the manualized protocol over 12 weeks. Primary analyses indicated significantly better posttest performance for the treatment group (compared to controls) on 3 of the 4 measures of emotion decoding and encoding and these were maintained at 5-week follow-up. Analyses of secondary measures favored the treatment group for 1 of the 2 measures; specifically, ASD symptoms were significantly lower at posttest and follow-up.
    Journal of Autism and Developmental Disorders 02/2015; DOI:10.1007/s10803-015-2374-0 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The design of "Serious games" that use game components (e.g., storyline, long-term goals, rewards) to create engaging learning experiences has increased in recent years. We examine of the core principles of serious game design and examine the current use of these principles in computer-based interventions for individuals with autism. Participants who undergo these computer-based interventions often show little evidence of the ability to generalize such learning to novel, everyday social communicative interactions. This lack of generalized learning may result, in part, from the limited use of fundamental elements of serious game design that are known to maximize learning. We suggest that future computer-based interventions should consider the full range of serious game design principles that promote generalization of learning.
    Journal of Autism and Developmental Disorders 12/2014; DOI:10.1007/s10803-014-2333-1 · 3.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of neurophysiological approaches together with rare and common risk factors for Autism Spectrum Disorder (ASD) allows elucidating the specific underlying neurobiology of ASD. Whereas most neurophysiologically based research in ASD to date has focussed on case-control differences based on the DSM- or ICD-based categorical ASD diagnosis, more recent studies have aimed at studying genetically and/or neurophysiologically defined homogeneous ASD subgroups for specific neuronal biomarkers. This review addresses the neurophysiological investigation of ASD by evoked and event-related potentials, by EEG/MEG connectivity measures such as coherence, and transcranial magnetic stimulation. As an example of classical neurophysiological studies in ASD, we report event-related potential studies which have illustrated which brain areas and processing stages are affected in the visual perception of socially relevant stimuli. However, a paradigm shift has taken place in recent years focussing on how these findings can be tracked down to basic neuronal functions such as deficits in cortico-cortical connectivity and the interaction between brain areas. Disconnectivity, for example, can again be related to genetically induced shifts in the excitation/inhibition balance. Genetic causes of ASD may be grouped by their effects on the brain's system level to identify ASD subgroups which respond differentially to therapeutic interventions.
    Journal of Neural Transmission 07/2014; 121(9). DOI:10.1007/s00702-014-1265-4 · 2.87 Impact Factor


Available from
May 27, 2014