Article

Further Improvements of the P. falciparum Humanized Mouse Model

Malaria Vaccine Development Laboratory, Institut Pasteur, Paris, France.
PLoS ONE (Impact Factor: 3.53). 03/2011; 6(3):e18045. DOI: 10.1371/journal.pone.0018045
Source: PubMed

ABSTRACT It has been shown previously that it is possible to obtain growth of Plasmodium falciparum in human erythrocytes grafted in mice lacking adaptive immune responses by controlling, to a certain extent, innate defences with liposomes containing clodronate (clo-lip). However, the reproducibility of those models is limited, with only a proportion of animals supporting longstanding parasitemia, due to strong inflammation induced by P. falciparum. Optimisation of the model is much needed for the study of new anti-malarial drugs, drug combinations, and candidate vaccines.
We investigated the possibility of improving previous models by employing the intravenous route (IV) for delivery of both human erythrocytes (huRBC) and P. falciparum, instead of the intraperitoneal route (IP), by testing various immunosuppressive drugs that might help to control innate mouse defences, and by exploring the potential benefits of using immunodeficient mice with additional genetic defects, such as those with IL-2Rγ deficiency (NSG mice).
We demonstrate here the role of aging, of inosine and of the IL-2 receptor γ mutation in controlling P. falciparum induced inflammation. IV delivery of huRBC and P. falciparum in clo-lip treated NSG mice led to successful infection in 100% of inoculated mice, rapid rise of parasitemia to high levels (up to 40%), long-lasting parasitemia, and consistent results from mouse-to-mouse. Characteristics were closer to human infection than in previous models, with evidence of synchronisation, partial sequestration, and receptivity to various P. falciparum strains without preliminary adaptation. However, results show that a major IL-12p70 inflammatory response remains prevalent.
The combination of the NSG mouse, clodronate loaded liposomes, and IV delivery of huRBC has produced a reliable and more relevant model that better meets the needs of Malaria research.

Download full-text

Full-text

Available from: Pierre Druilhe, Aug 17, 2014
1 Follower
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Work with human specific viruses will greatly benefit from the use of an in vivo system that provides human target cells and tissues in a physiological setting. In this regard humanized mice (hu-Mice) have played an important role in our understanding of viral pathogenesis and testing of therapeutic strategies. Limitations with earlier versions of hu-Mice that lacked a functioning human immune system are currently being overcome. The new generation hu-Mouse models are capable of multilineage human hematopoiesis and generate T cells, B cells, macrophages and dendritic cells required for an adaptive human immune response. Now any human specific pathogen that can infect humanized mice can be studied in the context of ongoing infection and immune responses. Two leading humanized mouse models are currently employed: the hu-HSC model is created by transplantation of human hematopoietic stem cells (HSC), whereas the BLT mouse model is prepared by transplantation of human fetal liver, thymus and HSC. A number of human specific viruses such as HIV-1, dengue, EBV and HCV are being studied intensively in these systems. Both models permit infection by mucosal routes with viruses such as HIV-1 thus allowing transmission prevention studies. Cellular and humoral immune responses are seen in both the models. While there is efficient antigen specific IgM production, IgG responses are suboptimal due to inefficient immunoglobulin class switching. With the maturation of T cells occurring in the autologous human thymus, BLT mice permit human HLA restricted T cell responses in contrast to hu-HSC mice. However, the strength of the immune responses needs further improvement in both models to reach the levels seen in humans. The scope of hu-Mice use is further broadened by transplantation of additional tissues like human liver thus permitting immunopathogenesis studies on hepatotropic viruses such as HCV. Numerous studies that encompass antivirals, gene therapy, viral evolution, and the generation of human monoclonal antibodies have been conducted with promising results in these mice. For further improvement of the new hu-Mouse models, ongoing work is focused on generating new strains of immunodeficient mice transgenic for human HLA molecules to strengthen immune responses and human cytokines and growth factors to improve human cell reconstitution and their homeostatic maintenance.
    Virology 01/2013; 435(1):14-28. DOI:10.1016/j.virol.2012.10.007 · 3.28 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of an effective malaria vaccine has taken many decades, but there is now a good chance that the first malaria vaccine will be licensed within the next few years. However, this vaccine (RTS,S) will not be fully effective, and more efficacious, second-generation vaccines will be needed. Good progress is being made in the development of potential vaccines directed at each of the three main stages of the parasite's life cycle, with a variety of different approaches, but many challenges remain, e.g. overcoming the problem of polymorphism in many key parasite antigens. It is likely vaccines that are effective enough to block transmission, and thus contribute to increasing drives towards malaria elimination, will need to contain antigens from different stages of the parasite's life cycle.
    Clinical Microbiology and Infection 06/2011; 17(11):1600-7. DOI:10.1111/j.1469-0691.2011.03612.x · 5.20 Impact Factor