Article

Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(4):e18266. DOI: 10.1371/journal.pone.0018266
Source: PubMed

ABSTRACT Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

0 Bookmarks
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psoriasis is a chronic inflammatory skin disease with complex pathological features and unmet pharmacotherapy needs. Here, we present a framework for developing new therapeutic intervention strategies for psoriasis by utilizing publicly available clinical transcriptomics data sets. By exploring the underlying molecular mechanisms of psoriasis, the effects of subsequent perturbation of these mechanisms by drugs and an integrative analysis, we propose a psoriasis disease signature, identify potential drug repurposing opportunities and present novel target selection methodologies. We anticipate that the outlined methodology or similar approaches will further support biomarker discovery and the development of new drugs for psoriasis.
    Drug discovery today 01/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytokines are critical checkpoints of inflammation. The treatment of human autoimmune disease has been revolutionized by targeting inflammatory cytokines as key drivers of disease pathogenesis. Despite this, there exist numerous pitfalls when translating preclinical data into the clinic. We developed an integrative biology approach combining human disease transcriptome data sets with clinically relevant in vivo models in an attempt to bridge this translational gap. We chose interleukin-22 (IL-22) as a model cytokine because of its potentially important proinflammatory role in epithelial tissues. Injection of IL-22 into normal human skin grafts produced marked inflammatory skin changes resembling human psoriasis. Injection of anti-IL-22 monoclonal antibody in a human xenotransplant model of psoriasis, developed specifically to test potential therapeutic candidates, efficiently blocked skin inflammation. Bioinformatic analysis integrating both the IL-22 and anti-IL-22 cytokine transcriptomes and mapping them onto a psoriasis disease gene coexpression network identified key cytokine-dependent hub genes. Using knockout mice and small-molecule blockade, we show that one of these hub genes, the so far unexplored serine/threonine kinase PIM1, is a critical checkpoint for human skin inflammation and potential future therapeutic target in psoriasis. Using in silico integration of human data sets and biological models, we were able to identify a new target in the treatment of psoriasis.
    Science translational medicine 02/2014; 6(223):223ra22. · 10.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The skin is the front line of defense against insult and injury and contains many epidermal and immune elements that comprise the skin-associated lymphoid tissue (SALT). The reaction of these components to injury allows an effective cutaneous response to restore homeostasis. Psoriasis vulgaris is the best-understood and most accessible human disease that is mediated by T cells and dendritic cells. Inflammatory myeloid dendritic cells release IL-23 and IL-12 to activate IL-17-producing T cells, Th1 cells, and Th22 cells to produce abundant psoriatic cytokines IL-17, IFN-γ, TNF, and IL-22. These cytokines mediate effects on keratinocytes to amplify psoriatic inflammation. Therapeutic studies with anticytokine antibodies have shown the importance of the key cytokines IL-23, TNF, and IL-17 in this process. We discuss the genetic background of psoriasis and its relationship to immune function, specifically genetic mutations, key PSORS loci, single nucleotide polymorphisms, and the skin transcriptome. The association between comorbidities and psoriasis is reviewed by correlating the skin transcriptome and serum proteins. Psoriasis-related cytokine-response pathways are considered in the context of the transcriptome of different mouse models. This approach offers a model for other inflammatory skin and autoimmune diseases.
    Annual Review of Immunology 03/2014; 32:227-55. · 36.56 Impact Factor

Full-text (2 Sources)

View
1,291 Downloads
Available from
May 31, 2014