Article

Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells.

Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8501, Japan.
The Journal of Cell Biology (Impact Factor: 10.82). 04/2011; 193(2):275-84. DOI: 10.1083/jcb.201102031
Source: PubMed

ABSTRACT Suppression of autophagy is always accompanied by marked accumulation of p62, a selective autophagy substrate. Because p62 interacts with the Nrf2-binding site on Keap1, which is a Cullin 3-based ubiquitin ligase adapter protein, autophagy deficiency causes competitive inhibition of the Nrf2-Keap1 interaction, resulting in stabilization of Nrf2 followed by transcriptional activation of Nrf2 target genes. Herein, we show that liver-specific autophagy-deficient mice harbor adenomas linked to both the formation of p62- and Keap1-positive cellular aggregates and induction of Nrf2 targets. Importantly, similar aggregates were identified in more than 25% of human hepatocellular carcinomas (HCC), and induction of Nrf2 target genes was recognized in most of these tumors. Gene targeting of p62 in an HCC cell line markedly abrogates the anchorage-independent growth, whereas forced expression of p62, but not a Keap1 interaction-defective mutant, resulted in recovery of the growth defect. These results indicate the involvement of persistent activation of Nrf2 through the accumulation of p62 in hepatoma development.

0 Bookmarks
 · 
330 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of the anti-apoptotic protein BCL-2 is characteristic of human follicular lymphoma (FL) and some cases of diffuse large B cell lymphoma (DLBCL). We aimed to determine autophagy status in primary FL and DLBCL samples and the BCL-2+/BCL-2- lymphoma cell lines using both autophagy PCR array and tissue microarray (TMA). A greater number of autophagy machinery genes were up-regulated in the BCL-2+ Su-DHL4 cell line compared with BCL-2- Su-DHL8 cells, at both the basal level and in response to autophagic stress. The autophagy-related gene expression profiles were determined in purified and unpurified malignant human lymph node biopsies. Seven autophagy machinery genes were up-regulated in purified FL B-cells compared with reactive B-cells. Only 2 autophagy machinery genes were up-regulated in DLBCL B-cells. In unpurified tissue biopsies, 20 of 46 genes in FL and 2 of 5 genes in DLBCL with increased expression were autophagy machinery genes. Expression of autophagy substrates p62 and LC3 were determined by TMAs. FL samples showed significantly decreased levels of both p62 and LC3 compared with reactive and DLBCL, indicative of an increased autophagy activity in FL. In summary, these results demonstrate that FL showed increased basal autophagy activity, regardless of overexpression of BCL-2 in this disease.
    Oncotarget 10/2014; · 6.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor promoting functions of autophagy are primarily attributed to its ability to promote cancer cell survival. However, emerging evidence suggests that autophagy plays other roles during tumorigenesis. Here, we uncover that autophagy promotes oncogenic RAS-driven invasion. In epithelial cells transformed with oncogenic RAS, depletion of autophagy-related genes suppresses invasion in three-dimensional culture, decreases cell motility, and reduces pulmonary metastases in vivo. Treatment with conditioned media from autophagy-competent cells rescues the invasive capacity of autophagy-deficient cells, indicating these cells fail to secrete factors required for RAS-driven invasion. Reduced autophagy diminishes the secretion of the pro-migratory cytokine IL6, which is necessary to restore invasion of autophagy-deficient cells. Moreover, autophagy-deficient cells exhibit reduced levels of MMP2 and WNT5A. These results support a previously unrecognized function for autophagy in promoting cancer cell invasion via the coordinate production of multiple secreted factors.
    Cancer Discovery 02/2014; · 15.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a lysosomal degradation process that evolved as a starvation response in lower eukaryotes and has gained numerous functions in higher organisms. In animals, autophagy works as a central process in cellular quality control by removing waste or excess proteins and organelles. Impaired autophagy and the age-related decline of this pathway favour the pathogenesis of many diseases that occur especially at higher age such as neurodegenerative diseases and cancer. Caloric restriction (CR) promotes longevity and healthy ageing. Currently, the contributing role of autophagy in the context of CR-induced health benefits is being unravelled. Furthermore recent studies imply that the advantages from polyphenol consumption may be also connected to autophagy induction. In this review, the literature on autophagy regulation by (dietary) polyphenols such as resveratrol, catechin, quercetin, silibinin and curcumin is discussed with a focus on the underlying molecular mechanisms. Special attention is paid to the implications of age-related autophagy decline for diseases and the possibility of dietary countermeasures.
    Ageing research reviews 04/2012; 12(1):237-252. · 5.62 Impact Factor

Full-text (2 Sources)

View
62 Downloads
Available from
May 22, 2014