Article

Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells.

Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8501, Japan.
The Journal of Cell Biology (Impact Factor: 10.82). 04/2011; 193(2):275-84. DOI: 10.1083/jcb.201102031
Source: PubMed

ABSTRACT Suppression of autophagy is always accompanied by marked accumulation of p62, a selective autophagy substrate. Because p62 interacts with the Nrf2-binding site on Keap1, which is a Cullin 3-based ubiquitin ligase adapter protein, autophagy deficiency causes competitive inhibition of the Nrf2-Keap1 interaction, resulting in stabilization of Nrf2 followed by transcriptional activation of Nrf2 target genes. Herein, we show that liver-specific autophagy-deficient mice harbor adenomas linked to both the formation of p62- and Keap1-positive cellular aggregates and induction of Nrf2 targets. Importantly, similar aggregates were identified in more than 25% of human hepatocellular carcinomas (HCC), and induction of Nrf2 target genes was recognized in most of these tumors. Gene targeting of p62 in an HCC cell line markedly abrogates the anchorage-independent growth, whereas forced expression of p62, but not a Keap1 interaction-defective mutant, resulted in recovery of the growth defect. These results indicate the involvement of persistent activation of Nrf2 through the accumulation of p62 in hepatoma development.

0 Bookmarks
 · 
300 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared to normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both anti-oxidant enzymes (catalase, SOD1, and SOD2) and anti-apoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element (ARE) promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 puncta cells in non-transformed BEAS-2B cells, where these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long-term exposure to cadmium in the BEAS-2B cells as well as anti-apoptotic proteins and anti-oxidant enzymes. These proteins are over-expressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions upregulate the anti-oxidant proteins catalase and SOD, and the anti-apoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis.
    The Journal of biological chemistry. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a lysosome-associated, degradative process that catabolizes cytosolic components to recycle nutrients for further use and maintain cell homeostasis. Hepatitis C virus (HCV) is a major cause of chronic hepatitis, which often leads to end-stage liver-associated diseases and is a significant burden on worldwide public health. Emerging lines of evidence indicate that autophagy plays an important role in promoting the HCV life cycle in host cells. Moreover, the diverse impacts of autophagy on a variety of signaling pathways in HCV-infected cells suggest that the autophagic process is required for balancing HCV-host cell interactions and involved in the pathogenesis of HCV-related liver diseases. However, the detailed molecular mechanism underlying how HCV activates autophagy to benefit viral growth is still enigmatic. Additionally, how the autophagic response contributes to disease progression in HCV-infected cells remains largely unknown. Hence, in this review, we overview the interplay between autophagy and the HCV life cycle and propose possible mechanisms by which autophagy may promote the pathogenesis of HCV-associated chronic liver diseases. Moreover, we outline the related studies on how autophagy interplays with HCV replication and discuss the possible implications of autophagy and viral replication in the progression of HCV-induced liver diseases, e.g., steatosis and hepatocellular carcinoma. Finally, we explore the potential therapeutics that target autophagy to cure HCV infection and its related liver diseases.
    World journal of gastroenterology : WJG. 05/2014; 20(19):5773-5793.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused by mutations in the FLCN gene and characterized by benign hair follicle tumors, pneumothorax, and renal cancer. Folliculin (FLCN), the protein product of the FLCN gene, is a poorly characterized tumor suppressor protein, currently linked to multiple cellular pathways. Autophagy maintains cellular homeostasis by removing damaged organelles and macromolecules. Although the autophagy kinase ULK1 drives autophagy, the underlying mechanisms are still being unraveled and few ULK1 substrates have been identified to date. Here, we identify that loss of FLCN moderately impairs basal autophagic flux, while re-expression of FLCN rescues autophagy. We reveal that the FLCN complex is regulated by ULK1 and elucidate 3 novel phosphorylation sites (Ser406, Ser537, and Ser542) within FLCN, which are induced by ULK1 overexpression. In addition, our findings demonstrate that FLCN interacts with a second integral component of the autophagy machinery, GABA(A) receptor-associated protein (GABARAP). The FLCN-GABARAP association is modulated by the presence of either folliculin-interacting protein (FNIP)-1 or FNIP2 and further regulated by ULK1. As observed by elevation of GABARAP, sequestome 1 (SQSTM1) and microtubule-associated protein 1 light chain 3 (MAP1LC3B) in chromophobe and clear cell tumors from a BHD patient, we found that autophagy is impaired in BHD-associated renal tumors. Consequently, this work reveals a novel facet of autophagy regulation by ULK1 and substantially contributes to our understanding of FLCN function by linking it directly to autophagy through GABARAP and ULK1.
    Autophagy 07/2014; 10(10). · 12.04 Impact Factor

Full-text (2 Sources)

View
50 Downloads
Available from
May 22, 2014