Article

Erlotinib-Mediated Inhibition of EGFR Signaling Induces Metabolic Oxidative Stress through NOX4

Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA.
Cancer Research (Impact Factor: 9.28). 06/2011; 71(11):3932-40. DOI: 10.1158/0008-5472.CAN-10-3425
Source: PubMed

ABSTRACT Redox regulation of epidermal growth factor receptor (EGFR) signaling helps protect cells against oxidative stress. In this study, we investigated whether the cytotoxicity of an EGFR tyrosine kinase inhibitor, erlotinib (ERL), was mediated by induction of oxidative stress in human head and neck cancer (HNSCC) cells. ERL elicited cytotoxicity in vitro and in vivo while increasing a panel of oxidative stress parameters which were all reversible by the antioxidant N-acetyl cysteine. Knockdown of EGFR by using siRNA similarly increased these oxidative stress parameters. Overexpression of mitochondrial targeted catalase but not superoxide dismutase reversed ERL-induced cytotoxicity. Consistent with a general role for NADPH oxidase (NOX) enzymes in ERL-induced oxidative stress, ERL-induced cytotoxicity was reversed by diphenylene iodonium, a NOX complex inhibitor. ERL reduced the expression of NOX1, NOX2, and NOX5 but induced the expression of NOX4. Knockdown of NOX4 by using siRNA protected HNSCC cells from ERL-induced cytotoxicity and oxidative stress. Our findings support the concept that ERL-induced cytotoxicity is based on a specific mechanism of oxidative stress mediated by hydrogen peroxide production through NOX4 signaling.

Download full-text

Full-text

Available from: Francis J Miller, Jul 04, 2015
0 Followers
 · 
224 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-EGFR therapy is among the most promising molecular targeted therapies against cancer developed in the past decade. However, drug resistance eventually arises in most, if not all, treated patients. Emerging evidence has linked epigenetic changes, such as DNA methylation at CpG islands, to the development of resistance to multiple anticancer drugs. In addition, genes that are differentially methylated have increasingly been appreciated as a source of clinically relevant biomarker candidates. To identify genes that are specifically methylated during the evolution of resistance to anti-EGFR therapeutic agents, we performed a methylation-specific array containing a panel of 56 genes that are commonly known to be regulated through promoter methylation in two parental non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC) cell lines and their resistant derivatives to either erlotinib or cetuximab. We found that death-associated protein kinase (DAPK) was hypermethylated in drug-resistant derivatives generated from both parental cell lines. Restoration of DAPK into the resistant NSCLC cells by stable transfection re-sensitized the cells to both erlotinib and cetuximab. Conversely, siRNA-mediated knockdown of DAPK induced resistance in the parental sensitive cells. These results demonstrate that DAPK plays important roles in both cetuximab and erlotinib resistance, and that gene silencing through promoter methylation is one of the key mechanisms of developed resistance to anti-EGFR therapeutic agents. In conclusion, DAPK could be a novel target to overcome resistance to anti-EGFR agents to improve the therapeutic benefit, and further evaluation of DAPK methylation as a potential biomarker of drug response is needed.
    Cell cycle (Georgetown, Tex.) 04/2012; 11(8):1656-63. DOI:10.4161/cc.20120 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NADPH oxidases are a family of oxidases that utilize molecular oxygen to generate hydrogen peroxide and superoxide, thus indicating physiological functions of these highly reactive and short-lived species. The regulation of these NADPH oxidases (nox) enzymes is complex, with many members of this family exhibiting complexity in terms of subunit composition, cellular location, and tissue-specific expression. While the complexity of the nox family (Nox1-5, Duox1, 2) is daunting, the complexity also allows for targeting of NADPH oxidases in disease states. In this review, we discuss which inflammatory and malignant disorders can be targeted by nox inhibitors, as well as clinical experience in the use of such inhibitors.
    Cellular and Molecular Life Sciences CMLS 05/2012; 69(14):2435-42. DOI:10.1007/s00018-012-1017-2 · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The survival rates of patients with squamous cell carcinoma of the head and neck (HNSCC) have not improved significantly despite multi-modality therapy, including surgery, radiation therapy, and chemotherapy. Recently, molecular targeted agents have shown significant improvement in clinical outcomes; for example, in chronic myelogeneous leukemia with imatinib, breast cancer with trastuzumab, colon cancer with bevacizumab and cetuximab, and renal cell cancer with sorafenib and sunitinib. In HNSCC, the epidermal growth factor receptor antibody cetuximab has shown promising results in combination with radiation. Targeted agents including cetuximab induce stresses to activate prosurvival autophagy. Combining autophagy inhibitors with agents that induce autophagy as a prosurvival response may therefore increase their therapeutic efficacy. Whether autophagy contributes to the prosurvival response or to the antitumor effect of chemotherapeutic drugs is largely unknown. This review will discuss the possible role of autophagy as a novel target for anticancer therapy agents in HNSCC.
    Cancer biology & therapy 09/2012; 13(11):978-91. DOI:10.4161/cbt.21079 · 3.63 Impact Factor