Article

Cocaine Cues Drive Opposing Context-Dependent Shifts in Reward Processing and Emotional State

Department of Psychology, University of North Carolina, Chapel Hill, USA.
Biological psychiatry (Impact Factor: 9.47). 06/2011; 69(11):1067-74. DOI: 10.1016/j.biopsych.2011.02.014
Source: PubMed

ABSTRACT Prominent neurobiological theories of addiction posit a central role for aberrant mesolimbic dopamine release but disagree as to whether repeated drug experience blunts or enhances this system. Although drug withdrawal diminishes dopamine release, drug sensitization augments mesolimbic function, and both processes have been linked to drug seeking. One possibility is that the dopamine system can rapidly switch from dampened to enhanced release depending on the specific drug-predictive environment. To test this, we examined dopamine release when cues signaled delayed cocaine delivery versus imminent cocaine self-administration.
Fast-scan cyclic voltammetry was used to examine real-time dopamine release while simultaneously monitoring behavioral indexes of aversion as rats experienced a sweet taste cue that predicted delayed cocaine availability and during self-administration. Furthermore, the impact of cues signaling delayed drug availability on intracranial self-stimulation, a broad measure of reward function, was assessed.
We observed decreased mesolimbic dopamine concentrations, decreased reward sensitivity, and negative affect in response to the cocaine-predictive taste cue that signaled delayed cocaine availability. Importantly, dopamine concentration rapidly switched to elevated levels to cues signaling imminent cocaine delivery in the subsequent self-administration session.
These findings show rapid, bivalent contextual control over brain reward processing, affect, and motivated behavior and have implications for mechanisms mediating substance abuse.

Full-text

Available from: Jeremy J Day, Jun 13, 2015
0 Followers
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the aversive stimuli that cause drug seeking is not well characterized. In a series of experiments we scrutinized the subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine seeking. Additionally, we examined the midbrain regulation of both dopamine signaling and cocaine seeking by the stress-sensitive peptide, corticotropin releasing factor (CRF). Methods Combining fast-scan cyclic voltammetry with behavioral pharmacology, we examined the effect of intraoral quinine administration on nucleus accumbens dopamine signaling and hedonic expression in twenty-one male, Sprague-Dawley rats. We tested the role of CRF in modulating aversion-induced changes in dopamine concentration and cocaine seeking by bilaterally infusing the CRF antagonist, CP-376395, into the ventral tegmental area (VTA). Results We found that quinine rapidly reduced dopamine signaling on two distinct timescales. We determined that CRF acted in the VTA to mediate this reduction on only one of these timescales. Further, we found that the reduction of dopamine tone and quinine-induced cocaine seeking were eliminated by blocking the actions of CRF in the VTA during the experience of the aversive stimulus. Conclusions These data demonstrate that stress-induced drug seeking can occur in a terminal environment of low dopamine tone that is dependent on a CRF-induced decrease in midbrain dopamine activity.
    Biological Psychiatry 09/2014; 77(10). DOI:10.1016/j.biopsych.2014.09.004 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub-second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal-directed behavior, and locomotion, and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of components required to sample and analyze dopamine concentration changes in awake rats with FSCV. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.
    Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ... [et al.] 01/2015; 70:7.25.1-7.25.20. DOI:10.1002/0471142301.ns0725s70
  • [Show abstract] [Hide abstract]
    ABSTRACT: In a preclinical model of natural reward devaluation by cocaine, taste cues elicit aversive taste reactivity when they predict impending but delayed cocaine self-administration. Here, we investigated this negative affective state as a function of cocaine dose. Male, Sprague-Dawley rats were given 45 brief intraoral infusions of a 0.15% saccharin solution before 2 h cocaine self-administration for 14 days. Rats were video recorded; taste reactivity and patterns of self-administration were quantified on the first and last days. On day 14, a significant decrease in appetitive taste reactivity and increase in aversive taste reactivity was observed (compared with day 1) that did not vary as a function of cocaine dose. In contrast, patterns of cocaine self-administration (i.e. the total number of lever presses and load-up behavior) varied as a function of dose across days. Further, load-up behavior was positively correlated with aversive taste reactivity (i.e. gapes) on day 14 across all doses tested. Collectively, these findings indicate that the emergence of negative affect in this preclinical model is not dependent on cocaine dose.
    Behavioural Pharmacology 03/2015; 26(4). DOI:10.1097/FBP.0000000000000131 · 2.19 Impact Factor