Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression.

Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
Cancer cell (Impact Factor: 25.29). 04/2011; 19(4):441-55. DOI: 10.1016/j.ccr.2011.03.002
Source: PubMed

ABSTRACT Chronic pancreatitis is a well-known risk factor for pancreatic ductal adenocarcinoma (PDA) development in humans, and inflammation promotes PDA initiation and progression in mouse models of the disease. However, the mechanistic link between inflammatory damage and PDA initiation is unclear. Using a Kras-driven mouse model of PDA, we establish that the inflammatory mediator Stat3 is a critical component of spontaneous and pancreatitis-accelerated PDA precursor formation and supports cell proliferation, metaplasia-associated inflammation, and MMP7 expression during neoplastic development. Furthermore, we show that Stat3 signaling enforces MMP7 expression in PDA cells and that MMP7 deletion limits tumor size and metastasis in mice. Finally, we demonstrate that serum MMP7 level in human patients with PDA correlated with metastatic disease and survival.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Despite improvements in the clinical management, the prognosis of PDAC remains dismal. In the present comprehensive review, we will examine the knowledge of PDAC genetics and the new insights into human genome sequencing and clonal evolution. Additionally, the biology and the role of the stroma in tumor progression and response to treatment will be presented. Furthermore, we will describe the evidence on tumor chemoresistance and radioresistance and will provide an overview on the recent advances in PDAC metabolism and circulating tumor cells. Next, we will explore the characteristics and merits of the different mouse models of PDAC. The inflammatory milieu and the immunosuppressive microenvironment mediate tumor initiation and treatment failure. Hence, we will also review the inflammatory and immune escaping mechanisms and the new immunotherapies tested in PDAC. A better understanding of the different mechanisms of tumor formation and progression will help us to identify the best targets for testing in future clinical studies of PDAC. Copyright © 2014. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 12/2014; · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is one of the most aggressive, drug-resistant and lethal types of cancer with poor prognosis. Various factors including reactive oxygen species, cytokines, growth factors, and extracellular matrix proteins are reported to be involved in the development of pancreatic cancer. However, the pathogenesis of pancreatic cancer has not been completely elucidated. Oxidative stress has been shown to contribute to the development of pancreatic cancer. Evidences supporting the role of reactive oxygen species and cytokines as a risk for pancreatic cancer and the concept of antioxidant supplementation as a preventive approach for pancreatic cancer have been proposed. Here, we review the literature on oxidative stress, cytokine expression, inflammatory signaling, and natural antioxidant supplementation in relation to pancreatic cancer.
    Journal of cancer prevention. 06/2014; 19(2):97-102.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that cancer stem cells (CSCs) play an important role in the development of pancreatic cancer. Multiple oncogenes and signaling pathways have been confirmed to participate in the stemness maintenance and tumorigenicity of CSCs, including sex-determining region Y-box 2 (SOX2) and signal transduction and activation of transcription 3 (STAT3), which may provide novel therapeutic targets on pancreatic cancer. Here, we reported in pancreatic cancer tissues and cells that miR-1181 expression was markedly downregulated, and the low miR-1181 expression was associated with poorer overall survival and disease-free survival in pancreatic cancer patients. Furthermore, overexpression of miR-1181 inhibited, whereas downregulation of miR-1181 promoted, CSCs-like phenotypes in vitro and tumorigenicity in vivo in pancreatic cancer cells. Moreover, we demonstrated that miR-1181 directly suppressed SOX2 and STAT3 expression, resulting in downregulation of SOX2 and inhibition of the STAT3 pathway. Hence, our results suggest that miR-1181 plays a vital role in inhibiting the CSCs-like phenotypes in pancreatic cancer and might represent a potential target for anti-pancreatic cancer. Copyright © 2014. Published by Elsevier Ireland Ltd.
    Cancer Letters 11/2014; · 5.02 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014