Article

Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial.

Obesity Clinical Trials Programme, Duke University Medical Center, Durham, NC 27710, USA.
The Lancet (Impact Factor: 39.21). 04/2011; 377(9774):1341-52. DOI: 10.1016/S0140-6736(11)60205-5
Source: PubMed

ABSTRACT Obesity is associated with a reduction in life expectancy and an increase in mortality from cardiovascular diseases, cancer, and other causes. We therefore assessed the efficacy and safety of two doses of phentermine plus topiramate controlled-release combination as an adjunct to diet and lifestyle modification for weight loss and metabolic risk reduction in individuals who were overweight and obese, with two or more risk factors.
In this 56-week phase 3 trial, we randomly assigned overweight or obese adults (aged 18-70 years), with a body-mass index of 27-45 kg/m(2) and two or more comorbidities (hypertension, dyslipidaemia, diabetes or prediabetes, or abdominal obesity) to placebo, once-daily phentermine 7·5 mg plus topiramate 46·0 mg, or once-daily phentermine 15·0 mg plus topiramate 92·0 mg in a 2:1:2 ratio in 93 centres in the USA. Drugs were administered orally. Patients were randomly assigned by use of a computer-generated algorithm that was implemented through an interactive voice response system, and were stratified by sex and diabetic status. Investigators, patients, and study sponsors were masked to treatment. Primary endpoints were the percentage change in bodyweight and the proportion of patients achieving at least 5% weight loss. Analysis was by intention to treat. This study is registered with Clinical Trials.gov, number NCT00553787.
Of 2487 patients, 994 were assigned to placebo, 498 to phentermine 7·5 mg plus topiramate 46·0 mg, and 995 to phentermine 15·0 mg plus topiramate 92·0 mg; 979, 488, and 981 patients, respectively, were analysed. At 56 weeks, change in bodyweight was -1·4 kg (least-squares mean -1·2%, 95% CI -1·8 to -0·7), -8·1 kg (-7·8%, -8·5 to -7·1; p<0·0001), and -10·2 kg (-9·8%, -10·4 to -9·3; p<0·0001) in the patients assigned to placebo, phentermine 7·5 mg plus topiramate 46·0 mg, and phentermine 15·0 mg plus topiramate 92·0 mg, respectively. 204 (21%) patients achieved at least 5% weight loss with placebo, 303 (62%; odds ratio 6·3, 95% CI 4·9 to 8·0; p<0·0001) with phentermine 7·5 mg plus topiramate 46·0 mg, and 687 (70%; 9·0, 7·3 to 11·1; p<0·0001) with phentermine 15·0 mg plus topiramate 92·0 mg; for ≥10% weight loss, the corresponding numbers were 72 (7%), 182 (37%; 7·6, 5·6 to 10·2; p<0·0001), and 467 (48%; 11·7, 8·9 to 15·4; p<0·0001). The most common adverse events were dry mouth (24 [2%], 67 [13%], and 207 [21%] in the groups assigned to placebo, phentermine 7·5 mg plus topiramate 46·0 mg, and phentermine 15·0 mg plus topiramate 92·0 mg, respectively), paraesthesia (20 [2%], 68 [14%], and 204 [21%], respectively), constipation (59 [6%], 75 [15%], and 173 [17%], respectively), insomnia (47 [5%], 29 [6%], and 102 [10%], respectively), dizziness (31 [3%], 36 [7%], 99 [10%], respectively), and dysgeusia (11 [1%], 37 [7%], and 103 [10%], respectively). 38 (4%) patients assigned to placebo, 19 (4%) to phentermine 7·5 mg plus topiramate 46·0 mg, and 73 (7%) to phentermine 15·0 mg plus topiramate 92·0 mg had depression-related adverse events; and 28 (3%), 24 (5%), and 77 (8%), respectively, had anxiety-related adverse events.
The combination of phentermine and topiramate, with office-based lifestyle interventions, might be a valuable treatment for obesity that can be provided by family doctors.
Vivus.

0 Followers
 · 
399 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the 1980s, the prevalence of obesity has almost doubled worldwide. Treatments for obesity include lifestyle modification, medications and surgery. Newer anti-obesity medications have been shown to be effective at inducing initial weight management in addition to successful long-term weight maintenance. Historically, weight management medications have been associated with public safety concerns that have resulted in the majority being withdrawn from the market or never receiving medicinal authorization. Recently, several countries have approved some newer generation weight management medications which may be beneficial to combat obesity. These medications have varying effects on cardiometabolic parameters, both positive and potentially negative. This review will outline the mechanisms of action of these medications and their implications for both diabetes and cardiovascular risks.
    Current Cardiology Reports 05/2015; 17(5):590. DOI:10.1007/s11886-015-0590-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a major health priority in the United States, as well as globally. It is associated with multiple comorbidities and reduced life expectancy. Effective management of obesity involves producing an intervention plan tailored to the individual patient. Potential contributory factors to weight gain, including dietary habits, physical inactivity, associated medical conditions, and medications, should be identified and addressed. Lifestyle interventions comprising diet modification, physical activity, and behavior therapy are foundational to the management of obesity. Caloric restriction is the most important component in achieving weight loss through negative energy balance, whereas sustained physical activity is important in maintaining the weight loss. Adjunctive therapies in the form of pharmacotherapy and bariatric surgery are required in patients who do not achieve targeted weight loss and health goals with lifestyle interventions. Currently there are 3 drugs approved for long-term management of obesity, orlistat, phentermine/topiramate extended release, and lorcaserin, and there are 2 on the horizon, bupropion/naltrexone and liraglutide. Bariatric surgery is an effective strategy recognized to produce durable weight loss with amelioration of obesity-related comorbidities and should be considered a treatment option in eligible patients.
    Journal of cardiopulmonary rehabilitation and prevention 03/2015; 35(2):81-92. DOI:10.1097/HCR.0000000000000112 · 1.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Missing data are common in medical research, which can lead to a loss in statistical power and potentially biased results if not handled appropriately. Multiple imputation (MI) is a statistical method, widely adopted in practice, for dealing with missing data. Many academic journals now emphasise the importance of reporting information regarding missing data and proposed guidelines for documenting the application of MI have been published. This review evaluated the reporting of missing data, the application of MI including the details provided regarding the imputation model, and the frequency of sensitivity analyses within the MI framework in medical research articles. A systematic review of articles published in the Lancet and New England Journal of Medicine between January 2008 and December 2013 in which MI was implemented was carried out. We identified 103 papers that used MI, with the number of papers increasing from 11 in 2008 to 26 in 2013. Nearly half of the papers specified the proportion of complete cases or the proportion with missing data by each variable. In the majority of the articles (86%) the imputed variables were specified. Of the 38 papers (37%) that stated the method of imputation, 20 used chained equations, 8 used multivariate normal imputation, and 10 used alternative methods. Very few articles (9%) detailed how they handled non-normally distributed variables during imputation. Thirty-nine papers (38%) stated the variables included in the imputation model. Less than half of the papers (46%) reported the number of imputations, and only two papers compared the distribution of imputed and observed data. Sixty-six papers presented the results from MI as a secondary analysis. Only three articles carried out a sensitivity analysis following MI to assess departures from the missing at random assumption, with details of the sensitivity analyses only provided by one article. This review outlined deficiencies in the documenting of missing data and the details provided about imputation. Furthermore, only a few articles performed sensitivity analyses following MI even though this is strongly recommended in guidelines. Authors are encouraged to follow the available guidelines and provide information on missing data and the imputation process.
    BMC Medical Research Methodology 12/2015; 15(1):30. DOI:10.1186/s12874-015-0022-1 · 2.17 Impact Factor