Article

Cinnamon Intake Lowers Fasting Blood Glucose: Meta-Analysis

Department of Nutrition, University of California-Davis, Davis, California 95616, USA.
Journal of medicinal food (Impact Factor: 1.39). 04/2011; 14(9):884-9. DOI: 10.1089/jmf.2010.0180
Source: PubMed

ABSTRACT Cinnamon, the dry bark and twig of Cinnamomum spp., is a rich botanical source of polyphenolics that has been used for centuries in Chinese medicine and has been shown to affect blood glucose and insulin signaling. Cinnamon's effects on blood glucose have been the subject of many clinical and animal studies; however, the issue of cinnamon intake's effect on fasting blood glucose (FBG) in people with type 2 diabetes and/or prediabetes still remains unclear. A meta-analysis of clinical studies of the effect of cinnamon intake on people with type 2 diabetes and/or prediabetes that included three new clinical trials along with five trials used in previous meta-analyses was done to assess cinnamon's effectiveness in lowering FBG. The eight clinical studies were identified using a literature search (Pub Med and Biosis through May 2010) of randomized, placebo-controlled trials reporting data on cinnamon and/or cinnamon extract and FBG. Comprehensive Meta-Analysis (Biostat Inc., Englewood, NJ, USA) was performed on the identified data for both cinnamon and cinnamon extract intake using a random-effects model that determined the standardized mean difference ([i.e., Change 1(control) - Change 2(cinnamon)] divided by the pooled SD of the post scores). Cinnamon intake, either as whole cinnamon or as cinnamon extract, results in a statistically significant lowering in FBG (-0.49±0.2 mmol/L; n=8, P=.025) and intake of cinnamon extract only also lowered FBG (-0.48 mmol/L±0.17; n=5, P=.008). Thus cinnamon extract and/or cinnamon improves FBG in people with type 2 diabetes or prediabetes.

3 Bookmarks
 · 
358 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE Cinnamon has been studied in randomized controlled trials (RCTs) for its glycemic-lowering effects, but studies have been small and show conflicting results. A prior meta-analysis did not show significant results, but several RCTs have been published since then. We conducted an updated systematic review and meta-analysis of RCTs evaluating cinnamon's effect on glycemia and lipid levels. METHODS MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched through February 2012. Included RCTs evaluated cinnamon compared with control in patients with type 2 diabetes and reported at least one of the following: glycated hemoglobin (A1c), fasting plasma glucose, total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), or triglycerides. Weighted mean differences (with 95% confidence intervals) for endpoints were calculated using random-effects models. RESULTS In a meta-analysis of 10 RCTs (n = 543 patients), cinnamon doses of 120 mg/d to 6 g/d for 4 to 18 weeks reduced levels of fasting plasma glucose (-24.59 mg/dL; 95% CI, -40.52 to -8.67 mg/dL), total cholesterol (-15.60 mg/dL; 95% CI, -29.76 to -1.44 mg/dL), LDL-C (-9.42 mg/dL; 95% CI, -17.21 to -1.63 mg/dL), and triglycerides (-29.59 mg/dL; 95% CI, -48.27 to -10.91 mg/dL). Cinnamon also increased levels of HDL-C (1.66 mg/dL; 95% CI, 1.09 to 2.24 mg/dL). No significant effect on hemoglobin A1c levels (-0.16%; 95%, CI -0.39% to 0.02%) was seen. High degrees of heterogeneity were present for all analyses except HDL-C (I(2) ranging from 66.5% to 94.72%). CONCLUSIONS The consumption of cinnamon is associated with a statistically significant decrease in levels of fasting plasma glucose, total cholesterol, LDL-C, and triglyceride levels, and an increase in HDL-C levels; however, no significant effect on hemoglobin A1c was found. The high degree of heterogeneity may limit the ability to apply these results to patient care, because the preferred dose and duration of therapy are unclear.
    The Annals of Family Medicine 09/2013; 11(5):452-9. DOI:10.1370/afm.1517 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eighteen type II diabetics (9 women and 9 men) participated in a 12-week trial that consisted of 2 parts, a 3-week control phase followed by a 9-week experimental phase where half of the subjects received 1000 mg of Cinnamomum cassia while the other half received 1000 mg of a placebo pill. All of the subjects that were in the cinnamon group had a statistically significant decrease in their blood sugar levels with a P-value of 3.915 × 10(-10). The subjects in the cinnamon group had an average overall decrease in their blood sugar levels of about 30 mg/dL, which is comparable to oral medications available for diabetes. All subjects were educated on appropriate diabetic diets and maintained that diet for the entire 12 week study. Greater decreases in blood glucose values were observed in patients using the cinnamon compared to those using the dietary changes alone.
    Nutrition and Metabolic Insights 12/2012; 5:77-83. DOI:10.4137/NMI.S10498
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment of diabetic subjects with cinnamon demonstrated an improvement in blood glucose concentrations and insulin sensitivity but the underlying mechanisms remained unclear. This work intends to elucidate the impact of cinnamon effects on the brain by using isolated astrocytes, and an obese and diabetic mouse model. Cinnamon components (eugenol, cinnamaldehyde) were added to astrocytes and liver cells to measure insulin signaling and glycogen synthesis. Ob/ob mice were supplemented with extract from cinnamomum zeylanicum for 6 weeks and cortical brain activity, locomotion and energy expenditure were evaluated. Insulin action was determined in brain and liver tissues. Treatment of primary astrocytes with eugenol promoted glycogen synthesis, whereas the effect of cinnamaldehyde was attenuated. In terms of brain function in vivo, cinnamon extract improved insulin sensitivity and brain activity in ob/ob mice, and the insulin-stimulated locomotor activity was improved. In addition, fasting blood glucose levels and glucose tolerance were greatly improved in ob/ob mice due to cinnamon extracts, while insulin secretion was unaltered. This corresponded with lower triglyceride and increased liver glycogen content and improved insulin action in liver tissues. In vitro, Fao cells exposed to cinnamon exhibited no change in insulin action. Together, cinnamon extract improved insulin action in the brain as well as brain activity and locomotion. This specific effect may represent an important central feature of cinnamon in improving insulin action in the brain, and mediates metabolic alterations in the periphery to decrease liver fat and improve glucose homeostasis.
    PLoS ONE 03/2014; 9(3):e92358. DOI:10.1371/journal.pone.0092358 · 3.53 Impact Factor

Preview

Download
15 Downloads
Available from