Industrial Ziegler-Type Hydrogenation Catalysts Made from Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2) and AlEt3: Evidence for Nanoclusters and Sub-Nanocluster or Larger Ziegler-Nanocluster Based Catalysis

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
Langmuir (Impact Factor: 4.46). 05/2011; 27(10):6279-94. DOI: 10.1021/la200053f
Source: PubMed


Ziegler-type hydrogenation catalysts are important for industrial processes, namely, the large-scale selective hydrogenation of styrenic block copolymers. Ziegler-type hydrogenation catalysts are composed of a group 8-10 transition metal precatalyst plus an alkylaluminum cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts). However, for ∼50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of the metal species present after catalyst synthesis, and whether the species primarily responsible for catalytic hydrogenation activity are homogeneous (e.g., monometallic complexes) or heterogeneous (e.g., Ziegler nanoclusters defined as metal nanoclusters made from combination of Ziegler-type hydrogenation catalyst precursors). A critical review of the existing literature (Alley et al. J. Mol. Catal. A: Chem. 2010, 315, 1-27) and a recently published study using an Ir model system (Alley et al. Inorg. Chem. 2010, 49, 8131-8147) help to guide the present investigation of Ziegler-type hydrogenation catalysts made from the industrially favored precursors Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2), plus AlEt(3). The approach and methods used herein parallel those used in the study of the Ir model system. Specifically, a combination of Z-contrast scanning transmission electron microscopy (STEM), matrix assisted laser desorption ionization mass spectrometry (MALDI MS), and X-ray absorption fine structure (XAFS) spectroscopy are used to characterize the transition metal species both before and after hydrogenation. Kinetic studies including Hg(0) poisoning experiments are utilized to test which species are the most active catalysts. The main findings are that, both before and after catalytic cyclohexene hydrogenation, the species present comprise a broad distribution of metal cluster sizes from subnanometer to nanometer scale particles, with estimated mean cluster diameters of about 1 nm for both Co and Ni. The XAFS results also imply that the catalyst solutions are a mixture of the metal clusters described above, plus unreduced metal ions. The kinetics-based Hg(0) poisoning evidence suggests that Co and Ni Ziegler nanoclusters (i.e., M(≥4)) are the most active Ziegler-type hydrogenation catalysts in these industrial systems. Overall, the novelty and primary conclusions of this study are as follows: (i) this study examines Co- and Ni-based catalysts made from the actual industrial precursor materials, catalysts that are notoriously problematic regarding their characterization; (ii) the Z-contrast STEM results reported herein represent, to our knowledge, the best microscopic analysis of the industrial Co and Ni Ziegler-type hydrogenation catalysts; (iii) this study is the first explicit application of an established method, using multiple analytical methods and kinetics-based studies, for distinguishing homogeneous from heterogeneous catalysis in these Ziegler-type systems; and (iv) this study parallels the successful study of an Ir model Ziegler catalyst system, thereby benefiting from a comparison to those previously unavailable findings, although the greater M-M bond energy, and tendency to agglomerate, of Ir versus Ni or Co are important differences to be noted. Overall, the main result of this work is that it provides the leading hypothesis going forward to try to refute in future work, namely, that sub, M(≥4) to larger, M(n) Ziegler nanoclusters are the dominant, industrial, Co- and Ni- plus AlR(3) catalysts in Ziegler-type hydrogenation systems.

Download full-text


Available from: Saim Özkar,
  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved synthesis procedure is reported for the compounds [(1,5-COD)M(μ-O2C8H15)]2 (COD = cyclooctadiene, M = Ir (1), Rh (2), O2C8H15 = 2-ethylhexanoate); that procedure provides a more effective method of product isolation resulting in easier crystallization, and 76% and 85% yields of pure, crystalline 1 and 2, respectively. The improved synthesis and simplified crystallization of high-purity 1 and 2 are significant, not only because 1 is useful as a model for industrial Ziegler-type hydrogenation precatalysts, but also because 1 and 2 are potentially useful in a variety of other areas.
    Organometallics 08/2011; 30(18):5068–5070. DOI:10.1021/om2003249 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Determining the true, kinetically dominant catalytically active species, in the classic benzene hydrogenation system pioneered by Maitlis and co-workers 34 years ago starting with [RhCp*Cl(2)](2) (Cp* = [η(5)-C(5)(CH(3))(5)]), has proven to be one of the most challenging case studies in the quest to distinguish single-metal-based "homogeneous" from polymetallic, "heterogeneous" catalysis. The reason, this study will show, is the previous failure to use the proper combination of: (i) in operando spectroscopy to determine the dominant form(s) of the precatalyst's mass under catalysis (i.e., operating) conditions, and then crucially also (ii) the previous lack of the necessary kinetic studies, catalysis being a "wholly kinetic phenomenon" as J. Halpern long ago noted. An important contribution from this study will be to reveal the power of quantitiative kinetic poisoning experiments for distinguishing single-metal, or in the present case subnanometer Rh(4) cluster-based catalysis, from larger, polymetallic Rh(0)(n) nanoparticle catalysis, at least under favorable conditions. The combined in operando X-ray absorption fine structure (XAFS) spectroscopy and kinetic evidence provide a compelling case for Rh(4)-based, with average stoichiometry "Rh(4)Cp*(2.4)Cl(4)H(c)", benzene hydrogenation catalysis in 2-propanol with added Et(3)N and at 100 °C and 50 atm initial H(2) pressure. The results also reveal, however, that if even ca. 1.4% of the total soluble Rh(0)(n) had formed nanoparticles, then those Rh(0)(n) nanoparticles would have been able to account for all the observed benzene hydrogenation catalytic rate (using commercial, ca. 2 nm, polyethyleneglycol-dodecylether hydrosol stabilized Rh(0)(n) nanoparticles as a model system). The results--especially the poisoning methodology developed and employed--are of significant, broader interest since determining the nature of the true catalyst continues to be a central, often vexing issue in any and all catalytic reactions. The results are also of fundamental interest in that they add to a growing body of evidence indicating that certain, appropriately ligated, coordinatively unsaturated, subnanometer M(4) transition-metal clusters can be relatively robust catalysts. Also demonstrated herein is that Rh(4) clusters are poisoned by Hg(0), demonstrating for the first time that the classic Hg(0) poisoning test of "homogeneous" vs "heterogeneous" catalysts cannot distinguish Rh(4)-based subnanometer catalysts from Rh(0)(n) nanoparticle catalysts, at least for the present examples of these two specific, Rh-based catalysts.
    Journal of the American Chemical Society 11/2011; 133(46):18889-902. DOI:10.1021/ja2073438 · 12.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reported herein is the synthesis of the previously unknown [Ir(1,5-COD)(μ-H)](4) (where 1,5-COD = 1,5-cyclooctadiene), from commercially available [Ir(1,5-COD)Cl](2) and LiBEt(3)H in the presence of excess 1,5-COD in 78% initial, and 55% recrystallized, yield plus its unequivocal characterization via single-crystal X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, electrospray/atmospheric pressure chemical ionization mass spectrometry (ESI-MS), and UV-vis, IR, and nuclear magnetic resonance (NMR) spectroscopies. The resultant product parallels--but the successful synthesis is different from, vide infra--that of the known and valuable Rh congener precatalyst and synthon, [Rh(1,5-COD)(μ-H)](4). Extensive characterization reveals that a black crystal of [Ir(1,5-COD)(μ-H)](4) is composed of a distorted tetrahedral, D(2d) symmetry Ir(4) core with two long [2.90728(17) and 2.91138(17) Å] and four short Ir-Ir [2.78680 (12)-2.78798(12) Å] bond distances. One 1,5-COD and two edge-bridging hydrides are bound to each Ir atom; the Ir-H-Ir span the shorter Ir-Ir bond distances. XAFS provides excellent agreement with the XRD-obtained Ir(4)-core structure, results which provide both considerable confidence in the XAFS methodology and set the stage for future XAFS in applications employing this Ir(4)H(4) and related tetranuclear clusters. The [Ir(1,5-COD)(μ-H)](4) complex is of interest for at least five reasons, as detailed in the Conclusions section.
    Inorganic Chemistry 03/2012; 51(5):3186-93. DOI:10.1021/ic2026494 · 4.76 Impact Factor
Show more