Altered Dendritic Morphology of Purkinje cells in Dyt1 ΔGAG Knock-In and Purkinje Cell-Specific Dyt1 Conditional Knockout Mice

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
PLoS ONE (Impact Factor: 3.23). 03/2011; 6(3):e18357. DOI: 10.1371/journal.pone.0018357
Source: PubMed


DYT1 early-onset generalized dystonia is a neurological movement disorder characterized by involuntary muscle contractions. It is caused by a trinucleotide deletion of a GAG (ΔGAG) in the DYT1 (TOR1A) gene encoding torsinA; the mouse homolog of this gene is Dyt1 (Tor1a). Although structural and functional alterations in the cerebellum have been reported in DYT1 dystonia, neuronal morphology has not been examined in vivo.
In this study, we examined the morphology of the cerebellum in Dyt1 ΔGAG knock-in (KI) mice. Golgi staining of the cerebellum revealed a reduction in the length of primary dendrites and a decrease in the number of spines on the distal dendrites of Purkinje cells. To determine if this phenomenon was cell autonomous and mediated by a loss of torsinA function in Purkinje cells, we created a knockout of the Dyt1 gene only in Purkinje cells of mice. We found the Purkinje-cell specific Dyt1 conditional knockout (Dyt1 pKO) mice have similar alterations in Purkinje cell morphology, with shortened primary dendrites and decreased spines on the distal dendrites.
These results suggest that the torsinA is important for the proper development of the cerebellum and a loss of this function in the Purkinje cells results in an alteration in dendritic structure.

11 Reads
  • Source
    • "A chemical enhancement of torsinA levels restores the motor deficits in Dyt1 ΔGAG heterozygous KI male mice [44]. Moreover, both Dyt1 ΔGAG heterozygous KI mice and Purkinje cell-specific Dyt1 conditional knockout mice exhibit similar alterations of dendritic morphology in the cerebellar Purkinje cells [45]. Moreover, ΔE-torsinA may affect WT torsinA function by inducing the disassembly of WT torsinA oligomers as shown by an in vitro experiment [46]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: DYT1 early-onset generalized torsion dystonia (DYT1 dystonia) is an inherited movement disorder caused by mutations in one allele of DYT1 (TOR1A), coding for torsinA. The most common mutation is a trinucleotide deletion (ΔGAG), which causes a deletion of a glutamic acid residue (ΔE) in the C-terminal region of torsinA. Although recent studies using cultured cells suggest that torsinA contributes to protein processing in the secretory pathway, endocytosis, and the stability of synaptic proteins, the nature of how this mutation affects synaptic transmission remains unclear. We previously reported that theta-burst-induced long-term potentiation (LTP) in the CA1 region of the hippocampal slice is not altered in Dyt1 ΔGAG heterozygous knock-in (KI) mice. Here, we examined short-term synaptic plasticity and synaptic transmission in the hippocampal slices. Field recordings in the hippocampal Schaffer collaterals (SC) pathway revealed significantly enhanced paired pulse ratios (PPRs) in Dyt1 ΔGAG heterozygous KI mice, suggesting an impaired synaptic vesicle release. Whole-cell recordings from the CA1 neurons showed that Dyt1 ΔGAG heterozygous KI mice exhibited normal miniature excitatory post-synaptic currents (mEPSC), suggesting that action-potential independent spontaneous pre-synaptic release was normal. On the other hand, there was a significant decrease in the frequency, but not amplitude or kinetics, of spontaneous excitatory post-synaptic currents (sEPSC) in Dyt1 ΔGAG heterozygous KI mice, suggesting that the action-potential dependent pre-synaptic release was impaired. Moreover, hippocampal torsinA was significantly reduced in Dyt1 ΔGAG heterozygous KI mice. Although the hippocampal slice model may not represent the neurons directly associated with dystonic symptoms, impaired release of neurotransmitters caused by partial dysfunction of torsinA in other brain regions may contribute to the pathophysiology of DYT1 dystonia.
    PLoS ONE 08/2013; 8(8):e72491. DOI:10.1371/journal.pone.0072491 · 3.23 Impact Factor
  • Source
    • "A major novel finding of the present work is the localization of TA not only in the dendritic arbor but also in the spines of developing PCs. Of note, it has been recently observed that a reduced expression of TA selectively in PCs induced alterations of PC development resulting in shortened primary dendrites and decreased spine density [57]. Furthermore, most of the output fibers of the cerebellum originate in the DCN. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Torsin A (TA) is a ubiquitous protein belonging to the superfamily of proteins called "ATPases associated with a variety of cellular activities" (AAA(+) ATPase). To date, a great deal of attention has been focused on neuronal TA since its mutant form causes early-onset (DYT1) torsion dystonia, an inherited movement disorder characterized by sustained muscle contractions and abnormal postures. Interestingly, it has been proposed that TA, by interacting with the cytoskeletal network, may contribute to the control of neurite outgrowth and/or by acting as a chaperone at synapses could affect synaptic vesicle turnover and neurotransmitter release. Accordingly, both its peculiar developmental expression in striatum and cerebellum and evidence from DYT1 knock-in mice suggest that TA may influence dendritic arborization and synaptogenesis in the brain. Therefore, to better understand TA function a detailed description of its localization at synaptic level is required. Here, we characterized by means of rigorous quantitative confocal analysis TA distribution in the mouse cerebellum at postnatal day 14 (P14), when both cerebellar synaptogenesis and TA expression peak. We observed that the protein is broadly distributed both in cerebellar cortex and in the deep cerebellar nuclei (DCN). Of note, Purkinje cells (PC) express high levels of TA also in the spines and axonal terminals. In addition, abundant expression of the protein was found in the main GABA-ergic and glutamatergic inputs of the cerebellar cortex. Finally, TA was observed also in glial cells, a cellular population little explored so far. These results extend our knowledge on TA synaptic localization providing a clue to its potential role in synaptic development.
    PLoS ONE 06/2013; 8(6):e68063. DOI:10.1371/journal.pone.0068063 · 3.23 Impact Factor
  • Source
    • "Each DNA was isolated by adding equal volume of isopropanol and then washing with 70% ethanol. The deletion of exons 3 and 4 was confirmed by PCR using F and Tcko2 (5′-CCATAGCTGGACCTGCAATTAAG-3′) primers as described earlier [16], [37]. A group consisted of 11 Dyt1 sKO mice (7 males and 4 females) and 13 CT mice (6 males and 7 females) was used for the behavior tests. "
    [Show abstract] [Hide abstract]
    ABSTRACT: DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit.
    PLoS ONE 09/2011; 6(9):e24539. DOI:10.1371/journal.pone.0024539 · 3.23 Impact Factor
Show more

Similar Publications

Preview (3 Sources)

11 Reads
Available from