A La autoantigen homologue is required for the internal ribosome entry site mediated translation of giardiavirus.

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 03/2011; 6(3):e18263. DOI: 10.1371/journal.pone.0018263
Source: PubMed

ABSTRACT Translation of Giardiavirus (GLV) mRNA is initiated at an internal ribosome entry site (IRES) in the viral transcript. The IRES localizes to a downstream portion of 5' untranslated region (UTR) and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA), known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200-348aa) of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus.

  • Genes & Development 08/2001; 15(13):1593-612. · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Initiation of translation in eukaryotic cells can occur by two distinct mechanisms, cap-dependent scanning and internal ribosome entry. The latter mechanism requires the formation of a complex RNA structural element termed an internal ribosome entry segment (IRES). IRESs are located in the 5' untranslated region of the message, and in the presence of trans-acting factors allow the ribosome to be recruited to a site that is a considerable distance from the cap structure. Many cellular mRNAs have now been shown to contain IRESs and it is likely that up to 10% of all mRNAs have the capability to initiate translation by this mechanism. The majority of IRESs that have been identified thus far are found in mRNAs whose protein products are associated with the control of cell growth and cell death, including many growth factors, proto-oncogenes and proteins required for apoptosis. In this review, we discuss the cellular situations when IRESs are required, the trans-acting factors that are necessary for IRES function and deregulation of IRES-mediated translation in tumorigenesis.
    Oncogene 05/2004; 23(18):3200-7. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Picornavirus RNAs are uncapped messengers and have unusually long 5' nontranslated regions (5'NTRs) which contain many noninitiating AUG triplets. The translational efficiency of different picornavirus RNAs varies between different cell-free extracts and even in the same extract, such as micrococcal nuclease-treated rabbit reticulocyte lysates. The effect of the poliovirus 5'NTR on in vitro translation was compared with that of the 5'NTR of encephalomyocarditis virus by the use of synthetic mRNAs, micrococcal nuclease-treated HeLa cell extracts, and rabbit reticulocyte lysates. Artificial mono- and dicistronic mRNAs synthesized with T7 RNA polymerase were used to investigate whether the 5'NTR of encephalomyocarditis virus RNA contains a potential internal ribosomal entry site. The sequence between nucleotides 260 and 484 in the 5'NTR of encephalomyocarditis RNA was found to play a critical role in the efficient translation in both mono- and dicistronic mRNAs. Our data suggest that an internal ribosomal entry site resides in this region.
    Journal of Virology 09/1988; 62(8):2636-43. · 4.65 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014