Article

Molecular motors: directing traffic during RNA localization.

Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA.
Critical Reviews in Biochemistry and Molecular Biology (Impact Factor: 5.81). 06/2011; 46(3):229-39. DOI: 10.3109/10409238.2011.572861
Source: PubMed

ABSTRACT RNA localization, the enrichment of RNA in a specific subcellular region, is a mechanism for the establishment and maintenance of cellular polarity in a variety of systems. Ultimately, this results in a universal method for spatially restricting gene expression. Although the consequences of RNA localization are well-appreciated, many of the mechanisms that are responsible for carrying out polarized transport remain elusive. Several recent studies have illuminated the roles that molecular motor proteins play in the process of RNA localization. These studies have revealed complex mechanisms in which the coordinated action of one or more motor proteins can act at different points in the localization process to direct RNAs to their final destination. In this review, we discuss recent findings from several different systems in an effort to clarify pathways and mechanisms that control the directed movement of RNA.

Full-text

Available from: James Gagnon, Apr 09, 2014
0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization.
    Nature Reviews Molecular Cell Biology 12/2014; 16(2). DOI:10.1038/nrm3918 · 36.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Type I interferons are pivotal in the activation of autoimmune response in systemic lupus erythematous. However, the pathogenic role of interferon-alpha in patients affected by lupus nephritis remains uncertain. The aim of our study was to investigate the presence of a specific interferon signature in lupus nephritis and the effects of interferon-alpha at renal level. Methods We performed immunohistochemical analysis for MXA-protein and in situ hybridization to detect interferon-alpha signature and production in human lupus nephritis. Through microarray studies, we analyzed the gene expression profile of renal tubular epithelial cells, stimulated with interferon-alpha. We validated microarray results through real-time polymerase chain reaction, flow cytometry on renal tubular epithelial cells, and through immunohistochemical analysis and confocal microscopy on renal biopsies. Results Type I interferons signature was characterized by MXA-specific staining in renal tubular epithelial cells; in addition, in situ hybridization showed that renal tubular epithelial cells were the major producers of interferon-alpha, indicating a potential autocrine effect. Whole-genome expression profile showed interferon-alpha induced up-regulation of genes involved in innate immunity, protein ubiquitination and switching to immunoproteasome. In accordance with the in vitro data, class IV lupus nephritis showed up-regulation of the immunoproteasome subunit LMP7 in tubular epithelial cells associated with type I interferon signature. Conclusions Our data indicate that type I interferons might have a pathogenic role in lupus nephritis characterized by an autocrine effect of interferon-alpha on renal tubular epithelial cells. Therefore we hypothesize that inhibition of type I interferons might represent a therapeutic target to prevent tubulo-interstitial damage in patients with lupus nephritis.
    Arthritis research & therapy 03/2015; 17:72. DOI:10.1186/s13075-015-0588-3 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ZBP1-modulated localization of β-actin mRNA enables a cell to establish polarity and structural asymmetry. While the mechanism of β-actin mRNA localization has been well revealed, the underlying mechanism of how a specific molecular motor contributes to transport of the ZBP1 complex in non-neuronal cells remains elusive. In this study, we report the isolation and identification of KIF11, a microtubule motor, which physically interacts with ZBP1 and is a component of β-actin mRNP. We show that KIF11 co-localizes with the β-actin mRNA and the ability of KIF11 to transport β-actin mRNA is ZBP1-dependent. We characterize the corresponding regions of ZBP1 and KIF11, which mediate the two protein's interaction in vitro and in vivo. Disruption of the in vivo interaction of KIF11 with ZBP1 delocalizes β-actin mRNA and affects cell migration. Our study reveals a molecular mechanism that a particular microtubule motor mediates the transport of an mRNP through the direct interaction with an mRNA-binding protein.
    Journal of Cell Science 01/2015; 128(5). DOI:10.1242/jcs.161679 · 5.33 Impact Factor