Article

Oocytes in sheep homozygous for a mutation in bone morphogenetic protein receptor 1B express lower mRNA levels of bone morphogenetic protein 15 but not growth differentiation factor 9.

School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
Reproduction 04/2011; 142(1):53-61. DOI: 10.1530/REP-10-0485
Source: PubMed

ABSTRACT The aim of this study was to test the hypothesis that the high ovulation rate in ewes (BB) homozygous for a mutation in the bone morphogenetic protein receptor type 1B (BMPR1B) gene is linked to lower BMP15 and/or GDF9 mRNA in oocytes compared with those in wild-type (++) ewes. Cumulus cell-oocyte complexes (COC) and granulosa cells (GC) were recovered from ≥1 mm diameter follicles of BB and ++ ewes during a prostaglandin-induced follicular phase. Expression levels of GDF9 and BMP15 were measured by multiplex qPCR from individual COC. The gonadotropin-induced cAMP responses of the GC from each non-atretic follicle were measured following treatment with FSH or human chorionic gonadotropin. In a separate validation experiment, GDF9 and BMP15 expression was present only in oocytes and not in cumulus cells. There was no effect of follicular diameter on oocyte-derived GDF9 or BMP15 mRNA levels. The mean expression levels of BMP15, but not GDF9, were significantly lower in all non-atretic follicles, including the subsets containing either FSH- or LH-responsive GC in BB, compared with ++, ewes. No genotype effects were noted for FSH-induced cAMP production by GC either with respect to dose of, or number of follicles responding to, FSH. However, ovaries from BB ewes contained significantly more follicles responsive to LH, with respect to cAMP production in GC. We propose that these findings are consistent with the hypothesis that the higher ovulation rate in BB sheep is due, at least in part, to lower oocyte-derived BMP15 mRNA levels together with the earlier onset of LH-responsiveness in GC.

0 Followers
 · 
86 Views
  • Source
    • "In turn, the GC and CC nurture the developing oocyte via paracrine and cell-to-cell transfer of metabolic substrates and nutrients [12] [13]. However, in follicles undergoing atresia, such as those with reduced populations of GC, oocyte expression levels of GDF9 and BMP15 mRNA are reduced [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study's hypothesis was that the nutrient composition in follicular fluid (FF) of ovarian follicles in early lactating postpartum cows may influence reagent transfer from cumulus cells (CC) to the oocyte. To test this, concentrations of amino acids (AA), cholesterol, glucose, and nonesterified fatty acids were measured in FF from the largest antral follicles at Days 21 and 46 postpartum during which time, most animals were expected to have resumed ovulatory activity. From the range of concentrations measured, two media compositions (Lac and Half-Lac) were prepared to compare with medium 199 (M199). The AA and cholesterol concentrations in FF were on average, approximately 35% and greater than 1000% higher than in M199, respectively. The nonesterified fatty acids, but not glucose, concentrations also exceeded those in M199. The transfer of fluorescent dye from CC to oocytes in bovine cumulus-oocyte complexes incubated with and without phosphodiesterase inhibitors (dipyridamole and milrinone) and/or forskolin was assessed. Maximum dye accumulation in oocytes incubated in M199 occurred after 4 hours and was further increased (P < 0.001) by dipyridamole. The addition of dipyridamole to Lac, but not Half-Lac, media also increased dye accumulation. There were effects of media (P < 0.001), cholesterol (P < 0.001), and forskolin (P < 0.05) on dye accumulation but no effects of stearic or palmitic acid in either Lac or Half-Lac media. The addition of oleic acid in Half-Lac (P < 0.01), but not Lac, media inhibited dye accumulation. These results support the hypothesis that reagent transfer from CC to oocytes is compromised when the AA composition in FF is low, as sometimes occurs during early lactation.
    Theriogenology 05/2014; DOI:10.1016/j.theriogenology.2014.05.016 · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that the species-specific ovulation-rate phenotypes may be influenced by differences in the expression levels of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) mRNA and protein. The aim of this study was to compare GDF9 and BMP15 mRNA levels in individual denuded oocytes (DO) from a range of single (i.e. cow, red deer), single-to-triple (i.e. sheep) and high (i.e. pig, mouse, rat) ovulation-rate species. Compared to all other species studied, GDF9 mRNA levels were lower in DO of cows and deer, whilst BMP15 levels were highest in DO of pigs. There was no detectable expression of either GDF9 or BMP15 mRNA in CC from any species. The ratio of GDF9:BMP15 mRNA expression was highly correlated (R(2)>0.80) within each species but differed markedly between species (P<0.01). Thus, we conclude that the ratio of GDF9:BMP15 mRNA is species-specific across a wide range of ovulation-rate phenotypes.
    Molecular and Cellular Endocrinology 01/2012; 348(1):339-43. DOI:10.1016/j.mce.2011.09.033 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic studies have identified bone morphogenetic protein-15 (BMP15) as an essential regulator of female fertility in humans and in sheep. Oocyte-derived BMP15 is a noncovalently linked dimeric growth factor mediating its effects to ovarian somatic cells in a paracrine manner. Although receptor ectodomains capable of binding BMP15 have previously been reported, no cell surface receptor complex involved in BMP15 signaling has previously been characterized. Here we have expressed and purified recombinant human BMP15 noncovalent and covalent dimer variants. The biological effects of these BMP15 variants were assessed in cultured human granulosa-luteal cells or COV434 granulosa cell tumor cells using BMP-responsive transcriptional reporter assays and an inhibin B ELISA. Biochemical characterization of ligand-receptor interactions was performed with affinity-labeling experiments using [(125)I]iodinated BMP15 variants. Both ligand variants were shown to form homodimers and to stimulate Smad1/5/8 signaling and inhibin B production in human granulosa cells in a similar manner. [(125)I]Iodination of both ligands was achieved, but only the covalent dimer variant retained receptor binding capacity. The [(125)I]BMP15(S356C) variant bound preferentially to endogenous BMP receptor 1B (BMPR1B) and BMPR2 receptors on COV434 cells. Binding experiments in COS cells with overexpression of these receptors confirmed that the [(125)I]BMP15(S356C) variant binds to BMPR1B and BMPR2 forming the BMP15 signaling complex. The results provide the first direct evidence in any species on the identification of specific cell surface receptors for a member of the GDF9/BMP15 subfamily of oocyte growth factors. The fact that BMP15 uses preferentially BMPR1B as its type I receptor suggests an important role for the BMPR1B receptor in human female fertility. The result is well in line with the demonstration of ovarian failure in a recently reported human subject with a homozygous BMPR1B loss-of-function mutant.
    Endocrinology 03/2012; 153(3):1509-18. DOI:10.1210/en.2010-1390 · 4.64 Impact Factor
Show more