Oocytes in sheep homozygous for a mutation in bone morphogenetic protein receptor 1B express lower mRNA levels of bone morphogenetic protein 15 but not growth differentiation factor 9.

School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
Reproduction 04/2011; 142(1):53-61. DOI: 10.1530/REP-10-0485
Source: PubMed

ABSTRACT The aim of this study was to test the hypothesis that the high ovulation rate in ewes (BB) homozygous for a mutation in the bone morphogenetic protein receptor type 1B (BMPR1B) gene is linked to lower BMP15 and/or GDF9 mRNA in oocytes compared with those in wild-type (++) ewes. Cumulus cell-oocyte complexes (COC) and granulosa cells (GC) were recovered from ≥1 mm diameter follicles of BB and ++ ewes during a prostaglandin-induced follicular phase. Expression levels of GDF9 and BMP15 were measured by multiplex qPCR from individual COC. The gonadotropin-induced cAMP responses of the GC from each non-atretic follicle were measured following treatment with FSH or human chorionic gonadotropin. In a separate validation experiment, GDF9 and BMP15 expression was present only in oocytes and not in cumulus cells. There was no effect of follicular diameter on oocyte-derived GDF9 or BMP15 mRNA levels. The mean expression levels of BMP15, but not GDF9, were significantly lower in all non-atretic follicles, including the subsets containing either FSH- or LH-responsive GC in BB, compared with ++, ewes. No genotype effects were noted for FSH-induced cAMP production by GC either with respect to dose of, or number of follicles responding to, FSH. However, ovaries from BB ewes contained significantly more follicles responsive to LH, with respect to cAMP production in GC. We propose that these findings are consistent with the hypothesis that the higher ovulation rate in BB sheep is due, at least in part, to lower oocyte-derived BMP15 mRNA levels together with the earlier onset of LH-responsiveness in GC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of ovarian follicles is a unique instance of a morphogenesis process still occurring during adult life and resulting from the interactions between somatic and germ cells. In mammals, the initiation of follicular development from the pool of resting follicles is characterized by an increase in the oocyte size concomitant with the surrounding somatic cells proliferating to build an avascular tissue called granulosa. We present a stochastic individual-based model describing the first stages of follicular development, where the cell population is structured with respect to age (progression within the cell cycle) and space (radial distance from the oocyte). The model accounts for the molecular dialogue existing between the oocyte and granulosa cells. Three dynamically interacting scales are considered in the model: (i) a microscopic, local scale corresponding to an individual cell embedded in its immediate environment, (ii) a mesoscopic, semilocal scale corresponding to anatomical or functional areas of follicles, and (iii) a macroscopic, global scale corresponding to the morphology of the follicle. Numerical simulations are performed to reproduce the three-dimensional morphogenesis of follicles and to follow simultaneously the detailed spatial distribution of individual granulosa cells, their organization as concentric layers or functional cell clones, and the increase in the follicle size. Detailed quantitative simulation results are provided in the ovine species, in which well-characterized genetic mutations lead to a variety of phenotypic follicle morphogenesis. The model can help to explain pathological situations of imbalance between oocyte growth and follicular cell proliferation.
    SIAM Journal on Multiscale Modeling and Simulation 07/2013; 11(3). DOI:10.1137/120897249 · 1.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study's hypothesis was that the nutrient composition in follicular fluid (FF) of ovarian follicles in early lactating postpartum cows may influence reagent transfer from cumulus cells (CC) to the oocyte. To test this, concentrations of amino acids (AA), cholesterol, glucose, and nonesterified fatty acids were measured in FF from the largest antral follicles at Days 21 and 46 postpartum during which time, most animals were expected to have resumed ovulatory activity. From the range of concentrations measured, two media compositions (Lac and Half-Lac) were prepared to compare with medium 199 (M199). The AA and cholesterol concentrations in FF were on average, approximately 35% and greater than 1000% higher than in M199, respectively. The nonesterified fatty acids, but not glucose, concentrations also exceeded those in M199. The transfer of fluorescent dye from CC to oocytes in bovine cumulus-oocyte complexes incubated with and without phosphodiesterase inhibitors (dipyridamole and milrinone) and/or forskolin was assessed. Maximum dye accumulation in oocytes incubated in M199 occurred after 4 hours and was further increased (P < 0.001) by dipyridamole. The addition of dipyridamole to Lac, but not Half-Lac, media also increased dye accumulation. There were effects of media (P < 0.001), cholesterol (P < 0.001), and forskolin (P < 0.05) on dye accumulation but no effects of stearic or palmitic acid in either Lac or Half-Lac media. The addition of oleic acid in Half-Lac (P < 0.01), but not Lac, media inhibited dye accumulation. These results support the hypothesis that reagent transfer from CC to oocytes is compromised when the AA composition in FF is low, as sometimes occurs during early lactation.
    Theriogenology 05/2014; DOI:10.1016/j.theriogenology.2014.05.016 · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenetic proteins are known to be involved in determining ovulation rate in mammals. The mechanisms through which these proteins determine follicle fate are incompletely understood. In the present study, we used cattle as a model to evaluate the regulation of BMP15 and GDF9 receptors in granulosa cells during dominant follicle (DF) selection. Before follicular deviation (day 2 of the follicular wave), BMPR2 mRNA abundance tended to be higher in the second largest follicles (F2; P < 0.1) compared to the future dominant follicle (F1). At the expected time of follicular deviation (day 3), BMPR2 and BMPR1B mRNA levels were higher in subordinate follicles (SFs; P < 0.05) compared to dominant follicles (DFs). After deviation (on day 4), BMPR1B mRNA and protein were significantly more abundant in atretic SFs (as assessed by cleaved caspase 3) than in DFs. The fact that BMPR1B is more expressed in atretic follicles was further confirmed by using intrafollicular treatment with two agents known to induce atresia, namely an estradiol receptor antagonist (fulvestrant) and FGF10. In conclusion, the fact that BMPR-1B and -2 are more expressed in the second largest follicles before and at the expected time of follicular deviation is indicative of their inhibitory role in follicle differentiation and steroidogenesis. BMPR1B also seems to have a pivotal role during follicle regression since it is upregulated in advanced atretic follicles.
    Animal reproduction science 01/2013; DOI:10.1016/j.anireprosci.2013.12.002 · 1.58 Impact Factor