Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, PR China.
BMC Plant Biology (Impact Factor: 3.94). 04/2011; 11:61. DOI: 10.1186/1471-2229-11-61
Source: PubMed

ABSTRACT Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat.
In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress.
Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes in mammals and plants. However, the systematic examination of lncRNAs in plants lags behind that in mammals. Recently, lncRNAs have been identified in Arabidopsis and wheat; however, no systematic screening of potential lncRNAs has been reported for the rice genome. Results In this study, we perform whole transcriptome strand-specific RNA sequencing (ssRNA-seq) of samples from rice anthers, pistils, and seeds 5 days after pollination and from shoots 14 days after germination. Using these data, together with 40 available rice RNA-seq datasets, we systematically analyze rice lncRNAs and definitively identify lncRNAs that are involved in the reproductive process. The results show that rice lncRNAs have some different characteristics compared to those of Arabidopsis and mammals and are expressed in a highly tissue-specific or stage-specific manner. We further verify the functions of a set of lncRNAs that are preferentially expressed in reproductive stages and identify several lncRNAs as competing endogenous RNAs (ceRNAs), which sequester miR160 or miR164 in a type of target mimicry. More importantly, one lncRNA, XLOC_057324, is demonstrated to play a role in panicle development and fertility. We also develop a source of rice lncRNA-associated insertional mutants. Conclusions Genome-wide screening and functional analysis enabled the identification of a set of lncRNAs that are involved in the sexual reproduction of rice. The results also provide a source of lncRNAs and associated insertional mutants in rice. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0512-1) contains supplementary material, which is available to authorized users.
    Genome Biology 12/2014; 15(12). DOI:10.1186/s13059-014-0512-1 · 10.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
    Plant Biotechnology Journal 01/2015; 13(3). DOI:10.1111/pbi.12336 · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identification and characterization of 5,446 mlncRNAs from Salvia miltiorrhiza showed that the majority of identified mlncRNAs were stress responsive, providing a framework for elucidating mlncRNA functions in S. miltiorrhiza. mRNA-like noncoding RNAs (mlncRNAs) are transcribed by RNA polymerase II and are polyadenylated, capped and spliced. They play important roles in plant development and defense responses. However, there is no information available for mlncRNAs in Salvia miltiorrhiza Bunge, the first Chinese medicinal material entering the international market. To perform a transcriptome-wide identification of S. miltiorrhiza mlncRNAs, we assembled over 8 million RNA-seq reads from GenBank database and 5,624 ESTs from PlantGDB into 44422 unigenes. Using a computational identification pipeline, we identified 5446 S. miltiorrhiza mlncRNA candidates from the assembled unigenes. Of the 5446 mlncRNAs, 2 are primary transcripts of conserved miRNAs, and 2030 can be grouped into 470 families with at least two members in a family. Quantitative real-time PCR analysis of mlncRNAs with at least 900 nt showed that the majority were differentially expressed in roots, stems, leaves and flowers and responsive to methyl jasmonate (MeJA) treatment in S. miltiorrhiza. Analysis of published RNA-seq data showed that a total of 3,044 mlncRNAs were expressed in hairy roots of S. miltiorrhiza and the expression of 1,904 of the 3,044 mlncRNAs was altered by yeast extract and Ag(+) treatment. The results indicate that the majority of mlncRNAs are involved in plant response to stress. This study provides a framework for understanding the roles of mlncRNAs in S. miltiorrhiza.
    Planta 01/2015; DOI:10.1007/s00425-015-2246-z · 3.38 Impact Factor

Full-text (3 Sources)

Available from
Jun 14, 2014