Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, PR China.
BMC Plant Biology (Impact Factor: 3.94). 04/2011; 11(1):61. DOI: 10.1186/1471-2229-11-61
Source: PubMed

ABSTRACT Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat.
In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress.
Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.

Download full-text


Available from: Mingming Xin, Jun 13, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening.
    Journal of Experimental Botany 05/2015; DOI:10.1093/jxb/erv203 · 5.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drought is a major abiotic stress that affects plant growth, production, and survival. Plants have evolved sophisticated and highly complex reactions to drought stress, including large-scale transcriptome reconfiguration. Foxtail millet (Setaria italica) is a member of the Poaceae family. Because of its outstanding tolerance to drought stress foxtail millet has the potential to become a new model organism. To enrich our knowledge of the processes that contribute to drought resistance, we have used a deep sequencing approach to generate a genome-wide transcriptome of foxtail millet after exposure to simulated drought stress. A large number of differentially expressed genes were characterized; in particular, we examined the roles of small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs) in response to a water-deficit condition. These RNAs have remained largely unexplored in previous studies of stress-induced transcriptomes. We found that the reduced levels of 24-nt siRNA flanking genes were associated, for the most part, with proximal up-regulated genes, indicating a potential effect of 24-nt siRNAs on drought-regulated gene expression. Several lncRNAs that responded to the simulated drought stress were also identified, and we found that one of them shared sequence conservation and colinearity with its counterpart in sorghum (Sorghum bicolor). Our findings provide new insights into drought-induced changes in the foxtail millet transcriptome.
    Plant Molecular Biology 07/2013; 83(4-5). DOI:10.1007/s11103-013-0104-6 · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peach (Prunus persica) is one of the most important of deciduous fruit trees worldwide. To facilitate isolation of genes controlling important horticultural traits of peach, transcriptome sequencing was conducted in this study. A total of 133 million pair-end RNA-Seq reads were generated from leaf, flower, and fruit, and 90 % of reads were mapped to the peach draft genome. Sequence assembly revealed 1,162 transcription factors and 2,140 novel transcribed regions (NTRs). Of these 2,140 NTRs, 723 contain an open reading frame, while the rest 1,417 are non-coding RNAs. A total of 9,587 SNPs were identified across six peach genotypes, with an average density of one SNP per ~5.7 kb. The top of chromosome 2 has higher density of expressed SNPs than the rest of the peach genome. The average density of SSR is 312.5/Mb, with tri-nucleotide repeats being the most abundant. Most of the detected SSRs are AT-rich repeats and the most common di-nucleotide repeat is CT/TC. The predominant type of alternative splicing (AS) events in peach is exon-skipping isoforms, which account for 43 % of all the observed AS events. In addition, the most active transcribed regions in peach genome were also analyzed. Our study reveals for the first time the complexity of the peach transcriptome, and our results will be helpful for functional genomics research in peach.
    Plant Molecular Biology 06/2013; 83(4-5). DOI:10.1007/s11103-013-0093-5 · 4.07 Impact Factor