Article

Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing.

State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, PR China.
BMC Plant Biology (Impact Factor: 4.35). 01/2011; 11:61. DOI: 10.1186/1471-2229-11-61
Source: PubMed

ABSTRACT Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat.
In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress.
Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.

0 Bookmarks
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes. We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event. As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures.
    BMC Plant Biology 04/2014; 14(1):99. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. In this study, we investigate miRNAs in an agronomically important common tobacco in China, named Honghua Dajinyuan (a drought-tolerant cultivar). Here, we report a comprehensive analysis of miRNA expression profiles in mock-treat grown (CK) and 20 % polyethylene glycol-grown (PEG-grown) tobacco roots using a high-throughput sequencing approach. A total of 656 unique miRNAs representing 53 miRNA families were identified in the two libraries, of which 286 unique miRNAs representing 162 microRNAs were differentially expressed. In addition, nine differentially expressed microRNAs selected from different expressed miRNA family with high abundance were subjected to further analysis and validated by quantitative real-time PCR (Q-PCR). In addition, the expression pattern of these identified candidate conserved miRNA and target genes of three identified miRNA (nta-miR172b, nta-miR156i, and nta-miR160a) were also validated by Q-PCR. Gene ontology (GO) enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in metabolic process and response to stimulus. In particular, 25 target genes are involved in regulating plant hormone signal transduction and metabolism, indicating that these association microRNAs may play important regulatory roles in responding to PEG resistance. Moreover, this study adds a significant number of novel miRNAs to the tobacco miRNome.
    Functional & Integrative Genomics 03/2014; · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Micro RNAs are small non coding RNA molecule that plays a vital role in post transcriptional gene regulation by either translational repression or by inducing mRNA cleavage. These small non coding RNAs have emerged as one of the master regulators of plant growth and development. Recent studies have revealed their role in abiotic stress responses. Expression level of several miRNA changes when exposed to drought, salinity, temperature variations and oxidative environment resulting in modulation of the expression of target genes that are associated with stress response. This review aims to focus on the regulatory role of plant micro RNAs during abiotic stress.
    Gene Technology. 04/2014; 3.

Full-text (2 Sources)

View
1 Download
Available from
Jun 14, 2014