Strong links between metal contamination, habitat modification and estuarine larval fish distributions.

Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
Environmental Pollution (Impact Factor: 3.73). 04/2011; 159(6):1499-509. DOI: 10.1016/j.envpol.2011.03.008
Source: PubMed

ABSTRACT Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concerns regarding plastic debris and its ability to accumulate large concentrations of priority pollutants in the aquatic environment led us to quantify relationships between different types of mass-produced plastic and metals in seawater. At three locations in San Diego Bay, we measured the accumulation of nine targeted metals (aluminum, chromium, manganese, iron, cobalt, nickel, zinc, cadmium and lead) sampling at 1, 3, 6, 9 and 12 months, to five plastic types: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). Accumulation patterns were not consistent over space and time, and in general all types of plastic tended to accumulate similar concentrations of metals. When we did observe significant differences among concentrations of metals at a single sampling period or location in San Diego Bay, we found that HDPE typically accumulated lesser concentrations of metals than the other four polymers. Furthermore, over the 12-month study period, concentrations of all metals increased over time, and chromium, manganese, cobalt, nickel, zinc and lead did not reach saturation on at least one plastic type during the entire 12-month exposure. This suggests that plastic debris may accumulate greater concentrations of metals the longer it remains at sea. Overall, our work shows that a complex mixture of metals, including those listed as priority pollutants by the US EPA (Cd, Ni, Zn and Pb), can be found on plastic debris composed of various plastic types.
    PLoS ONE 01/2014; 9(1):e85433. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physicochemical variability in estuarine systems plays an important role in estuarine processes and in the lifecycles of estuarine organisms. In particular, seasonality of freshwater inflow to estuaries may be important in various aspects of fish lifecycles. This study aimed to further understand these relationships by studying the movements of a top-level estuarine predator in response to physicochemical variability in a large, temperate south-east Australian estuary (Shoalhaven River). Mulloway (Argyrosomus japonicus, 47-89 cm total length) were surgically implanted with acoustic transmitters, and their movements and migrations monitored over two years via fixed-position VR2W acoustic receivers configured in a linear array along the length of the estuary. The study period included a high degree of abiotic variability, with multiple pulses (exponentially high flows over a short period of time) in fresh water to the estuary, as well as broader seasonal variation in flow, temperature and conductivity. The relative deviation of fish from their modal location in the estuary was affected primarily by changes in conductivity, and smaller fish (n = 4) tended to deviate much further downstream from their modal position in the estuary than larger fish (n = 8). High-flow events which coincided with warmer temperatures tended to drive mature fish down the estuary and potentially provided a spawning signal to stimulate aggregation of adults near the estuary mouth; however, this relationship requires further investigation. These findings indicate that pulse and press effects of freshwater inflow and associated physicochemical variability play a role in the movements of mulloway, and that seasonality of large freshwater flows may be important in spawning. The possible implications of river regulation and the extraction of freshwater for consumptive uses on estuarine fishes are discussed.
    PLoS ONE 01/2014; 9(4):e95680. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cost-effective and sensitive measures of anthropogenic stress are necessary tools in any environmental monitoring program. When implementing new monitoring tools in a region, rigorous laboratory and field studies are essential for characterizing the sensitivity and efficacy of the approach. We exposed the oyster Saccostrea glomerata to various individual contaminants through multiple exposure pathways (water- and food-borne) in the laboratory and measured two biomarker responses, lysosomal membrane stability (LMS) and lipid peroxidation (LPO). LMS was sensitive to both contaminant exposure pathways. We subsequently measured this biomarker in oysters which had been experimentally deployed at multiple sites in each of ten estuaries with varying levels of contamination associated with re-suspended sediments. There was a strong association between LMS and metal exposure, despite substantial natural variation in water quality parameters. Our results illustrate the potential use of LMS as a pragmatic indicator of biotic injury in environmental monitoring programs for re-suspended contaminated sediments.
    Chemosphere 01/2014; · 3.14 Impact Factor


Available from
Jun 5, 2014