Article

Cerebellar white-matter changes in cannabis users with and without schizophrenia.

School of Psychology, University of Wollongong, Australia.
Psychological Medicine (Impact Factor: 5.59). 04/2011; 41(11):2349-59. DOI: 10.1017/S003329171100050X
Source: PubMed

ABSTRACT The cerebellum is rich in cannabinoid receptors and implicated in the neuropathology of schizophrenia. Long-term cannabis use is associated with functional and structural brain changes similar to those evident in schizophrenia, yet its impact on cerebellar structure has not been determined. We examined cerebellar grey and white matter in cannabis users with and without schizophrenia.
Seventeen patients with schizophrenia and 31 healthy controls were recruited; 48% of the healthy group and 47% of the patients were long-term heavy cannabis users (mean 19.7 and 17.9 years near daily use respectively). Cerebellar measures were extracted from structural 3-T magnetic resonance imaging (MRI) scans using semi-automated methods, and examined using analysis of covariance (ANCOVA) and correlational analyses.
Cerebellar white-matter volume was reduced in cannabis users with and without schizophrenia compared to healthy non-users, by 29.7% and 23.9% respectively, and by 17.7% in patients without cannabis use. Healthy cannabis users did not differ in white-matter volume from either of the schizophrenia groups. There were no group differences in cerebellar grey matter or total volumes. Total cerebellar volume decreased as a function of duration of cannabis use in the healthy users. Psychotic symptoms and illness duration correlated with cerebellar measures differentially between patients with and without cannabis use.
Long-term heavy cannabis use in healthy individuals is associated with smaller cerebellar white-matter volume similar to that observed in schizophrenia. Reduced volumes were even more pronounced in patients with schizophrenia who use cannabis. Cannabis use may alter the course of brain maturational processes associated with schizophrenia.

0 Bookmarks
 · 
318 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50%) and by pre-treatment with 3 mg/kg Δ9-THC (-53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.
    PLoS ONE 01/2014; 9(5):e98079. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies have shown that the association between cannabis and psychosis is robust and consistent across different samples, with compelling evidence for a dose-response relationship. Because longitudinal work indicates that cannabis use precedes psychotic symptoms, it seems reasonable to assume a causal relationship. However, more work is needed to address the possibility of gene-environment correlation (for example, genetic risk for psychosis causing onset of cannabis use). Moreover, knowledge about underlying biological mechanisms linking cannabis use and psychosis is still relatively limited. In order to understand how cannabis use may lead to an increased risk for psychosis, in the present article we (a) review the epidemiological, neurobiological, and genetic evidence linking cannabinoids and psychosis, (b) assess the quality of the evidence, and finally (c) try to integrate the most robust findings into a neurodevelopmental model of cannabis-induced psychosis and identify the gaps in knowledge that are in need of further investigation. Expected final online publication date for the Annual Review of Clinical Psychology Volume 10 is March 20, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Clinical Psychology 01/2014; · 12.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is a high prevalence of cannabis use reported in non-affective psychosis. Early prospective longitudinal studies conclude that cannabis use is a risk factor for psychosis, and neurochemical studies on cannabis have suggested potential mechanisms for this effect. Recent advances in the field of neuroscience and genetics may have important implications for our understanding of this relationship. Importantly, we need to better understand the vulnerability × cannabis interaction to shed light on the mediators of cannabis as a risk factor for psychosis. Thus, the present study reviews recent literature on several variables relevant for understanding the relationship between cannabis and psychosis, including age of onset, cognition, brain functioning, family history, genetics, and neurological soft signs (NSS) in non-affective psychosis. Compared with non-using non-affective psychosis, the present review shows that there seem to be fewer stable cognitive deficits in patients with cannabis use and psychosis, in addition to fewer NSS and possibly more normalized brain functioning, indicating less neurobiological vulnerability for psychosis. There are, however, some familiar and genetic vulnerabilities present in the cannabis psychosis group, which may influence the cannabis pathway to psychosis by increasing sensitivity to cannabis. Furthermore, an earlier age of onset suggests a different pathway to psychosis in the cannabis-using patients. Two alternative vulnerability models are presented to integrate these seemingly paradoxical findings.
    Frontiers in Psychiatry 01/2014; 5:159.

Full-text

Download
79 Downloads
Available from
May 22, 2014