Article

Cerebellar white-matter changes in cannabis users with and without schizophrenia

School of Psychology, University of Wollongong, Australia.
Psychological Medicine (Impact Factor: 5.43). 04/2011; 41(11):2349-59. DOI: 10.1017/S003329171100050X
Source: PubMed

ABSTRACT The cerebellum is rich in cannabinoid receptors and implicated in the neuropathology of schizophrenia. Long-term cannabis use is associated with functional and structural brain changes similar to those evident in schizophrenia, yet its impact on cerebellar structure has not been determined. We examined cerebellar grey and white matter in cannabis users with and without schizophrenia.
Seventeen patients with schizophrenia and 31 healthy controls were recruited; 48% of the healthy group and 47% of the patients were long-term heavy cannabis users (mean 19.7 and 17.9 years near daily use respectively). Cerebellar measures were extracted from structural 3-T magnetic resonance imaging (MRI) scans using semi-automated methods, and examined using analysis of covariance (ANCOVA) and correlational analyses.
Cerebellar white-matter volume was reduced in cannabis users with and without schizophrenia compared to healthy non-users, by 29.7% and 23.9% respectively, and by 17.7% in patients without cannabis use. Healthy cannabis users did not differ in white-matter volume from either of the schizophrenia groups. There were no group differences in cerebellar grey matter or total volumes. Total cerebellar volume decreased as a function of duration of cannabis use in the healthy users. Psychotic symptoms and illness duration correlated with cerebellar measures differentially between patients with and without cannabis use.
Long-term heavy cannabis use in healthy individuals is associated with smaller cerebellar white-matter volume similar to that observed in schizophrenia. Reduced volumes were even more pronounced in patients with schizophrenia who use cannabis. Cannabis use may alter the course of brain maturational processes associated with schizophrenia.

1 Follower
 · 
373 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent research has suggested that marijuana use is associated with volumetric and shape differences in subcortical structures, including the nucleus accumbens and amygdala, in a dose-dependent fashion. Replication of such results in well controlled studies is essential to clarify the effects of marijuana. To that end, this retrospective study examined brain morphology in a sample of adult daily marijuana users (n = 29) versus nonusers (n = 29) and a sample of adolescent daily users (n = 50) versus nonusers (n = 50). Groups were matched on a critical confounding variable, alcohol use, to a far greater degree than in previously published studies. We acquired high-resolution MRI scans, and investigated group differences in gray matter using voxel-based morphometry, surface-based morphometry, and shape analysis in structures suggested to be associated with marijuana use, as follows: the nucleus accumbens, amygdala, hippocampus, and cerebellum. No statistically significant differences were found between daily users and nonusers on volume or shape in the regions of interest. Effect sizes suggest that the failure to find differences was not due to a lack of statistical power, but rather was due to the lack of even a modest effect. In sum, the results indicate that, when carefully controlling for alcohol use, gender, age, and other variables, there is no association between marijuana use and standard volumetric or shape measurements of subcortical structures. Copyright © 2015 the authors 0270-6474/15/351505-08$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 01/2015; 35(4):1505-12. DOI:10.1523/JNEUROSCI.2946-14.2015 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls - and is affected by - normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics.
    Nature reviews Neuroscience 12/2014; 16(1):30-42. DOI:10.1038/nrn3876 · 31.38 Impact Factor
  • Schizophrenia Research 04/2012; 136:S110. DOI:10.1016/S0920-9964(12)70367-5 · 4.43 Impact Factor

Full-text

Download
88 Downloads
Available from
May 22, 2014