A Functional Magnetic Resonance Imaging Study of a Large Clinical Cohort of Children With Tourette Syndrome

Pediatric Department, Glostrup University Hospital, Glostrup, Denmark.
Journal of child neurology (Impact Factor: 1.59). 04/2011; 26(5):560-9. DOI: 10.1177/0883073810387928
Source: PubMed

ABSTRACT There is evidence that cortico-striato-thalamo-cortical pathways are involved in the pathophysiology of Tourette syndrome. During the performance of neuropsychological tests in subjects with Tourette syndrome there are suggestions for increased activity in the sensimotor cortex, supplementary motor areas, and frontal cortex. To replicate findings, the authors examined 22 medication-naive children with Tourette syndrome only, 17 medication-naive children with Tourette syndrome and comorbidity, and 39 healthy controls with functional magnetic resonance imaging (MRI). There were no differences in activation in brain regions between the children with Tourette syndrome (divided according to the presence of comorbidity) and healthy controls after correction for the confounders age, sex, and intelligence. Activation in the cingulated gyrus, temporal gyrus, and medial frontal gyrus was correlated significantly with obsessive-compulsive disorder score. The authors did not find significant correlations between activation patterns and age, sex, duration of disease, intelligence, severity of tics, and attention-deficit hyperactivity disorder (ADHD) score.

  • [Show abstract] [Hide abstract]
    ABSTRACT: There is evidence that cortico-striato-thalamo-cortical pathways are involved in Tourette syndrome. We performed a longitudinal imaging study in 22 patients and 21 healthy controls in order to examine the development of tics and its correlation with magnetic resonance imaging (MRI) findings. Patients were divided in a group with persisting and a group with remission of tics. We found a decrease in volume of left putamen in controls, but not in patients. We found changes in mean diffusivity between patients and controls in right caudate nucleus, thalamus, and frontal lobe. In contrast to controls, parallel and perpendicular diffusivity decreased in patients and were most pronounced in the patients with persisting tics compared to those with remission. The findings suggest that the development of the brain in patients with remission resembles the normal development more than in patients with persistent tics. This could reflect a change in brain structure or compensatory mechanisms in the brain. © The Author(s) 2014.
    Journal of Child Neurology 12/2014; DOI:10.1177/0883073814560629 · 1.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tic disorders are childhood onset neuropsychiatric disorders characterized by motor and/or vocal tics. Research has demonstrated that children with chronic tics (including Tourette syndrome and Chronic Tic Disorder: TS/CTD) can suppress tics, particularly when an immediate, contingent reward is given for successful tic suppression. As a diagnosis of TS/CTD requires tics to be present for at least one year, children in these tic suppression studies had been living with tics for quite some time. Thus, it is unclear whether the ability to inhibit tics is learned over time or present at tic onset. Resolving that issue would inform theories of how tics develop and how behavior therapy for tics works. We investigated tic suppression in school-age children as close to the time of tic onset as possible, and no later than six months after onset. Children were asked to suppress their tics both in the presence and absence of a contingent reward. Results demonstrated that these children, like children with TS/CTD, have some capacity to suppress tics, and that immediate reward enhances that capacity. These findings demonstrate that the modulating effect of reward on inhibitory control of tics is present within months of tic onset, before tics have become chronic
    Developmental Cognitive Neuroscience 08/2014; 11. DOI:10.1016/j.dcn.2014.08.005 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary Dystonia (pD) is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both. Gilles de la Tourette Syndrome (GTS) is a childhood-onset neuropsychiatric developmental disorder characterised by motor and phonic tics, which could progress to behavioural changes. GTS and obsessive-compulsive disorders (OCD) are often seen in comorbidity, also suggesting a possible overlap in the pathophysiological bases of these two conditions. PET techniques are of considerable value in detecting functional and molecular abnormalities in vivo, according to the adopted radioligands. For example, PET is the unique technique that allows in vivo investigation of neurotransmitter systems, providing evidence of changes in GTS or pD. For example, presynaptic and postsynaptic dopaminergic studies with PET have shown alterations compatible with dysfunction or loss of D2-bearing neurons, increased synaptic dopamine levels, or both. Measures of cerebral glucose metabolism with 18F-fluorodeoxyglucose (18F-FDG PET) are very sensitive in showing brain functional alterations as well. 18F-FDG PET data have shown metabolic changes within the cortico-striato-pallido-thalamo-cortical and cerebello-thalamo-cortical networks, revealing possible involvement of brain circuits not limited to basal ganglia in pD and GTS. The aim of this work is to overview PET consistent neuroimaging literature on pD and GTS that has provided functional and molecular knowledge of the underlying neural dysfunction. Furthermore we suggest potential applications of these techniques in monitoring treatments.
    Frontiers in Neurology 07/2014; DOI:10.3389/fneur.2014.00138